Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
|
| 7 |
+
# Load model and tokenizer
|
| 8 |
+
model = load_model()
|
| 9 |
+
model.eval()
|
| 10 |
+
text_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 11 |
+
|
| 12 |
+
# Image transform pipeline
|
| 13 |
+
image_transform = transforms.Compose([
|
| 14 |
+
transforms.Resize((224, 224)),
|
| 15 |
+
transforms.ToTensor(),
|
| 16 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 17 |
+
])
|
| 18 |
+
|
| 19 |
+
# Prediction function
|
| 20 |
+
def predict(image: Image.Image, text: str) -> str:
|
| 21 |
+
# Process text input
|
| 22 |
+
text_inputs = text_tokenizer(
|
| 23 |
+
text,
|
| 24 |
+
return_tensors="pt",
|
| 25 |
+
padding="max_length",
|
| 26 |
+
truncation=True,
|
| 27 |
+
max_length=512
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Process image input
|
| 31 |
+
image_input = image_transform(image).unsqueeze(0) # Add batch dimension
|
| 32 |
+
|
| 33 |
+
# Model inference
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
classification_output = model(
|
| 36 |
+
pixel_values=image_input,
|
| 37 |
+
input_ids=text_inputs["input_ids"],
|
| 38 |
+
attention_mask=text_inputs["attention_mask"]
|
| 39 |
+
)
|
| 40 |
+
predicted_class = torch.sigmoid(classification_output).round().item()
|
| 41 |
+
|
| 42 |
+
return "Biased" if predicted_class == 1 else "Unbiased"
|
| 43 |
+
|
| 44 |
+
# Gradio Interface
|
| 45 |
+
interface = gr.Interface(
|
| 46 |
+
fn=predict,
|
| 47 |
+
inputs=[
|
| 48 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 49 |
+
gr.Textbox(lines=2, placeholder="Enter text for classification...", label="Input Text")
|
| 50 |
+
],
|
| 51 |
+
outputs=gr.Label(label="Prediction"),
|
| 52 |
+
title="Multimodal Bias Classifier",
|
| 53 |
+
description="Upload an image and provide a text to classify it as 'Biased' or 'Unbiased'."
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
interface.launch()
|