Update app.py
Browse files
app.py
CHANGED
@@ -19,9 +19,9 @@ model_paths = {
|
|
19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
20 |
},
|
21 |
'Speed': {
|
22 |
-
'3 hours': '
|
23 |
-
'15 hours': '
|
24 |
-
'27 hours': '
|
25 |
}
|
26 |
}
|
27 |
|
@@ -35,130 +35,4 @@ scaler_paths = {
|
|
35 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
36 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
37 |
'21 hours': 'lr_21H_lat_lon_scaler.pkl',
|
38 |
-
'24 hours': '
|
39 |
-
'27 hours': 'lr_27H_lat_lon_scaler.pkl',
|
40 |
-
'30 hours': 'lr_30H_lat_lon_scaler.pkl',
|
41 |
-
'33 hours': 'lr_33H_lat_lon_scaler.pkl',
|
42 |
-
'36 hours': 'lr_36H_lat_lon_scaler.pkl'
|
43 |
-
},
|
44 |
-
'Speed': {
|
45 |
-
'3 hours': 'lgbm_speed_scaler_3H.pkl',
|
46 |
-
'15 hours': 'lgbm_speed_scaler_15H.pkl',
|
47 |
-
'27 hours': 'lgbm_speed_scaler_27H.pkl'
|
48 |
-
}
|
49 |
-
}
|
50 |
-
|
51 |
-
# Define time intervals for each prediction type
|
52 |
-
time_intervals = {
|
53 |
-
'Path': ['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
54 |
-
'Speed': ['3 hours', '15 hours', '27 hours']
|
55 |
-
}
|
56 |
-
|
57 |
-
def process_input(input_data, scaler, prediction_type):
|
58 |
-
input_data = np.array(input_data).reshape(-1, 7)
|
59 |
-
if prediction_type == 'Speed':
|
60 |
-
# For speed prediction, reshape accordingly
|
61 |
-
input_data = input_data[:2].reshape(1, 2, 7)
|
62 |
-
processed_data = input_data.reshape(-1, 14)
|
63 |
-
else: # Path
|
64 |
-
processed_data = input_data[:2].reshape(1, -1)
|
65 |
-
processed_data = scaler.transform(processed_data)
|
66 |
-
return processed_data
|
67 |
-
|
68 |
-
def load_model_and_predict(prediction_type, time_interval, input_data):
|
69 |
-
try:
|
70 |
-
# Load the model and scaler based on user selection
|
71 |
-
model = joblib.load(model_paths[prediction_type][time_interval])
|
72 |
-
scaler = joblib.load(scaler_paths[prediction_type][time_interval])
|
73 |
-
|
74 |
-
# Process input and predict
|
75 |
-
processed_data = process_input(input_data, scaler, prediction_type)
|
76 |
-
prediction = model.predict(processed_data)
|
77 |
-
|
78 |
-
if prediction_type == 'Path':
|
79 |
-
return f"Predicted Path after {time_interval}: Latitude: {prediction[0][0]}, Longitude: {prediction[0][1]}"
|
80 |
-
elif prediction_type == 'Speed':
|
81 |
-
return f"Predicted Speed after {time_interval}: {prediction[0]}"
|
82 |
-
except Exception as e:
|
83 |
-
return str(e)
|
84 |
-
|
85 |
-
# Gradio interface components
|
86 |
-
with gr.Blocks() as cyclone_predictor:
|
87 |
-
gr.Markdown("# Cyclone Path and Speed Prediction App")
|
88 |
-
|
89 |
-
# Dropdown for Prediction Type
|
90 |
-
prediction_type = gr.Dropdown(
|
91 |
-
choices=['Path', 'Speed'],
|
92 |
-
value='Path',
|
93 |
-
label="Select Prediction Type"
|
94 |
-
)
|
95 |
-
|
96 |
-
# Dropdown for Time Interval
|
97 |
-
time_interval = gr.Dropdown(
|
98 |
-
choices=time_intervals['Path'],
|
99 |
-
label="Select Time Interval"
|
100 |
-
)
|
101 |
-
|
102 |
-
# Function to update time intervals based on prediction type
|
103 |
-
def update_time_intervals(prediction_type):
|
104 |
-
return gr.Dropdown.update(choices=time_intervals[prediction_type])
|
105 |
-
|
106 |
-
# Update time intervals when prediction type changes
|
107 |
-
prediction_type.change(
|
108 |
-
fn=update_time_intervals,
|
109 |
-
inputs=prediction_type,
|
110 |
-
outputs=time_interval
|
111 |
-
)
|
112 |
-
|
113 |
-
# Input fields for user data
|
114 |
-
previous_lat_lon = gr.Textbox(
|
115 |
-
placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)",
|
116 |
-
label="Previous 3-hour Latitude/Longitude"
|
117 |
-
)
|
118 |
-
previous_speed = gr.Number(label="Previous 3-hour Speed") # Removed placeholder
|
119 |
-
previous_timestamp = gr.Textbox(
|
120 |
-
placeholder="Enter previous 3-hour timestamp (e.g., 2024,10,23,0)",
|
121 |
-
label="Previous 3-hour Timestamp (year, month, day, hour)"
|
122 |
-
)
|
123 |
-
|
124 |
-
present_lat_lon = gr.Textbox(
|
125 |
-
placeholder="Enter present 3-hour lat/lon (e.g., 15.71,90.29)",
|
126 |
-
label="Present 3-hour Latitude/Longitude"
|
127 |
-
)
|
128 |
-
present_speed = gr.Number(label="Present 3-hour Speed") # Removed placeholder
|
129 |
-
present_timestamp = gr.Textbox(
|
130 |
-
placeholder="Enter present 3-hour timestamp (e.g., 2024,10,23,3)",
|
131 |
-
label="Present 3-hour Timestamp (year, month, day, hour)"
|
132 |
-
)
|
133 |
-
|
134 |
-
# Output prediction
|
135 |
-
prediction_output = gr.Textbox(label="Prediction Output")
|
136 |
-
|
137 |
-
# Predict button
|
138 |
-
def get_input_data(previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp):
|
139 |
-
try:
|
140 |
-
# Parse inputs into required format
|
141 |
-
prev_lat, prev_lon = map(float, previous_lat_lon.split(','))
|
142 |
-
prev_time = list(map(int, previous_timestamp.split(',')))
|
143 |
-
previous_data = [prev_lat, prev_lon, previous_speed] + prev_time
|
144 |
-
|
145 |
-
present_lat, present_lon = map(float, present_lat_lon.split(','))
|
146 |
-
present_time = list(map(int, present_timestamp.split(',')))
|
147 |
-
present_data = [present_lat, present_lon, present_speed] + present_time
|
148 |
-
|
149 |
-
return [previous_data, present_data]
|
150 |
-
except Exception as e:
|
151 |
-
return str(e)
|
152 |
-
|
153 |
-
predict_button = gr.Button("Predict")
|
154 |
-
|
155 |
-
# Linking function to UI elements
|
156 |
-
predict_button.click(
|
157 |
-
fn=lambda pt, ti, p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time: load_model_and_predict(
|
158 |
-
pt, ti, get_input_data(p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time)
|
159 |
-
),
|
160 |
-
inputs=[prediction_type, time_interval, previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp],
|
161 |
-
outputs=prediction_output
|
162 |
-
)
|
163 |
-
|
164 |
-
cyclone_predictor.launch()
|
|
|
19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
20 |
},
|
21 |
'Speed': {
|
22 |
+
'3 hours': 'Igbm_3H_speed.pkl',
|
23 |
+
'15 hours': 'Igbm_15H_speed.pkl',
|
24 |
+
'27 hours': 'Igbm_27H_speed.pkl'
|
25 |
}
|
26 |
}
|
27 |
|
|
|
35 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
36 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
37 |
'21 hours': 'lr_21H_lat_lon_scaler.pkl',
|
38 |
+
'24 hours': 'lr_24H_lat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|