Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,9 +19,9 @@ model_paths = {
|
|
| 19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
| 20 |
},
|
| 21 |
'Speed': {
|
| 22 |
-
'3 hours': '
|
| 23 |
-
'15 hours': '
|
| 24 |
-
'27 hours': '
|
| 25 |
}
|
| 26 |
}
|
| 27 |
|
|
@@ -35,130 +35,4 @@ scaler_paths = {
|
|
| 35 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
| 36 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
| 37 |
'21 hours': 'lr_21H_lat_lon_scaler.pkl',
|
| 38 |
-
'24 hours': '
|
| 39 |
-
'27 hours': 'lr_27H_lat_lon_scaler.pkl',
|
| 40 |
-
'30 hours': 'lr_30H_lat_lon_scaler.pkl',
|
| 41 |
-
'33 hours': 'lr_33H_lat_lon_scaler.pkl',
|
| 42 |
-
'36 hours': 'lr_36H_lat_lon_scaler.pkl'
|
| 43 |
-
},
|
| 44 |
-
'Speed': {
|
| 45 |
-
'3 hours': 'lgbm_speed_scaler_3H.pkl',
|
| 46 |
-
'15 hours': 'lgbm_speed_scaler_15H.pkl',
|
| 47 |
-
'27 hours': 'lgbm_speed_scaler_27H.pkl'
|
| 48 |
-
}
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
# Define time intervals for each prediction type
|
| 52 |
-
time_intervals = {
|
| 53 |
-
'Path': ['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
| 54 |
-
'Speed': ['3 hours', '15 hours', '27 hours']
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
def process_input(input_data, scaler, prediction_type):
|
| 58 |
-
input_data = np.array(input_data).reshape(-1, 7)
|
| 59 |
-
if prediction_type == 'Speed':
|
| 60 |
-
# For speed prediction, reshape accordingly
|
| 61 |
-
input_data = input_data[:2].reshape(1, 2, 7)
|
| 62 |
-
processed_data = input_data.reshape(-1, 14)
|
| 63 |
-
else: # Path
|
| 64 |
-
processed_data = input_data[:2].reshape(1, -1)
|
| 65 |
-
processed_data = scaler.transform(processed_data)
|
| 66 |
-
return processed_data
|
| 67 |
-
|
| 68 |
-
def load_model_and_predict(prediction_type, time_interval, input_data):
|
| 69 |
-
try:
|
| 70 |
-
# Load the model and scaler based on user selection
|
| 71 |
-
model = joblib.load(model_paths[prediction_type][time_interval])
|
| 72 |
-
scaler = joblib.load(scaler_paths[prediction_type][time_interval])
|
| 73 |
-
|
| 74 |
-
# Process input and predict
|
| 75 |
-
processed_data = process_input(input_data, scaler, prediction_type)
|
| 76 |
-
prediction = model.predict(processed_data)
|
| 77 |
-
|
| 78 |
-
if prediction_type == 'Path':
|
| 79 |
-
return f"Predicted Path after {time_interval}: Latitude: {prediction[0][0]}, Longitude: {prediction[0][1]}"
|
| 80 |
-
elif prediction_type == 'Speed':
|
| 81 |
-
return f"Predicted Speed after {time_interval}: {prediction[0]}"
|
| 82 |
-
except Exception as e:
|
| 83 |
-
return str(e)
|
| 84 |
-
|
| 85 |
-
# Gradio interface components
|
| 86 |
-
with gr.Blocks() as cyclone_predictor:
|
| 87 |
-
gr.Markdown("# Cyclone Path and Speed Prediction App")
|
| 88 |
-
|
| 89 |
-
# Dropdown for Prediction Type
|
| 90 |
-
prediction_type = gr.Dropdown(
|
| 91 |
-
choices=['Path', 'Speed'],
|
| 92 |
-
value='Path',
|
| 93 |
-
label="Select Prediction Type"
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
# Dropdown for Time Interval
|
| 97 |
-
time_interval = gr.Dropdown(
|
| 98 |
-
choices=time_intervals['Path'],
|
| 99 |
-
label="Select Time Interval"
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
# Function to update time intervals based on prediction type
|
| 103 |
-
def update_time_intervals(prediction_type):
|
| 104 |
-
return gr.Dropdown.update(choices=time_intervals[prediction_type])
|
| 105 |
-
|
| 106 |
-
# Update time intervals when prediction type changes
|
| 107 |
-
prediction_type.change(
|
| 108 |
-
fn=update_time_intervals,
|
| 109 |
-
inputs=prediction_type,
|
| 110 |
-
outputs=time_interval
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
# Input fields for user data
|
| 114 |
-
previous_lat_lon = gr.Textbox(
|
| 115 |
-
placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)",
|
| 116 |
-
label="Previous 3-hour Latitude/Longitude"
|
| 117 |
-
)
|
| 118 |
-
previous_speed = gr.Number(label="Previous 3-hour Speed") # Removed placeholder
|
| 119 |
-
previous_timestamp = gr.Textbox(
|
| 120 |
-
placeholder="Enter previous 3-hour timestamp (e.g., 2024,10,23,0)",
|
| 121 |
-
label="Previous 3-hour Timestamp (year, month, day, hour)"
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
present_lat_lon = gr.Textbox(
|
| 125 |
-
placeholder="Enter present 3-hour lat/lon (e.g., 15.71,90.29)",
|
| 126 |
-
label="Present 3-hour Latitude/Longitude"
|
| 127 |
-
)
|
| 128 |
-
present_speed = gr.Number(label="Present 3-hour Speed") # Removed placeholder
|
| 129 |
-
present_timestamp = gr.Textbox(
|
| 130 |
-
placeholder="Enter present 3-hour timestamp (e.g., 2024,10,23,3)",
|
| 131 |
-
label="Present 3-hour Timestamp (year, month, day, hour)"
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
# Output prediction
|
| 135 |
-
prediction_output = gr.Textbox(label="Prediction Output")
|
| 136 |
-
|
| 137 |
-
# Predict button
|
| 138 |
-
def get_input_data(previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp):
|
| 139 |
-
try:
|
| 140 |
-
# Parse inputs into required format
|
| 141 |
-
prev_lat, prev_lon = map(float, previous_lat_lon.split(','))
|
| 142 |
-
prev_time = list(map(int, previous_timestamp.split(',')))
|
| 143 |
-
previous_data = [prev_lat, prev_lon, previous_speed] + prev_time
|
| 144 |
-
|
| 145 |
-
present_lat, present_lon = map(float, present_lat_lon.split(','))
|
| 146 |
-
present_time = list(map(int, present_timestamp.split(',')))
|
| 147 |
-
present_data = [present_lat, present_lon, present_speed] + present_time
|
| 148 |
-
|
| 149 |
-
return [previous_data, present_data]
|
| 150 |
-
except Exception as e:
|
| 151 |
-
return str(e)
|
| 152 |
-
|
| 153 |
-
predict_button = gr.Button("Predict")
|
| 154 |
-
|
| 155 |
-
# Linking function to UI elements
|
| 156 |
-
predict_button.click(
|
| 157 |
-
fn=lambda pt, ti, p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time: load_model_and_predict(
|
| 158 |
-
pt, ti, get_input_data(p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time)
|
| 159 |
-
),
|
| 160 |
-
inputs=[prediction_type, time_interval, previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp],
|
| 161 |
-
outputs=prediction_output
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
cyclone_predictor.launch()
|
|
|
|
| 19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
| 20 |
},
|
| 21 |
'Speed': {
|
| 22 |
+
'3 hours': 'Igbm_3H_speed.pkl',
|
| 23 |
+
'15 hours': 'Igbm_15H_speed.pkl',
|
| 24 |
+
'27 hours': 'Igbm_27H_speed.pkl'
|
| 25 |
}
|
| 26 |
}
|
| 27 |
|
|
|
|
| 35 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
| 36 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
| 37 |
'21 hours': 'lr_21H_lat_lon_scaler.pkl',
|
| 38 |
+
'24 hours': 'lr_24H_lat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|