Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,11 @@ model_paths = {
|
|
17 |
'30 hours': 'lr_30H_lat_lon.pkl',
|
18 |
'33 hours': 'lr_33H_lat_lon.pkl',
|
19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
}
|
22 |
|
@@ -29,17 +34,34 @@ scaler_paths = {
|
|
29 |
'12 hours': 'lr_12H_lat_lon_scaler.pkl',
|
30 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
31 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
|
|
32 |
'24 hours': 'lr_24H_lat_lon_scaler.pkl',
|
33 |
'27 hours': 'lr_27H_lat_lon_scaler.pkl',
|
34 |
'30 hours': 'lr_30H_lat_lon_scaler.pkl',
|
35 |
'33 hours': 'lr_33H_lat_lon_scaler.pkl',
|
36 |
'36 hours': 'lr_36H_lat_lon_scaler.pkl'
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
}
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
input_data = np.array(input_data).reshape(-1, 7)
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
processed_data = scaler.transform(processed_data)
|
44 |
return processed_data
|
45 |
|
@@ -50,31 +72,44 @@ def load_model_and_predict(prediction_type, time_interval, input_data):
|
|
50 |
scaler = joblib.load(scaler_paths[prediction_type][time_interval])
|
51 |
|
52 |
# Process input and predict
|
53 |
-
processed_data = process_input(input_data, scaler)
|
54 |
prediction = model.predict(processed_data)
|
55 |
|
56 |
if prediction_type == 'Path':
|
57 |
return f"Predicted Path after {time_interval}: Latitude: {prediction[0][0]}, Longitude: {prediction[0][1]}"
|
|
|
|
|
58 |
except Exception as e:
|
59 |
return str(e)
|
60 |
|
61 |
# Gradio interface components
|
62 |
with gr.Blocks() as cyclone_predictor:
|
63 |
-
gr.Markdown("# Cyclone Path Prediction App")
|
64 |
|
65 |
# Dropdown for Prediction Type
|
66 |
prediction_type = gr.Dropdown(
|
67 |
-
choices=['Path'],
|
68 |
value='Path',
|
69 |
label="Select Prediction Type"
|
70 |
)
|
71 |
|
72 |
# Dropdown for Time Interval
|
73 |
time_interval = gr.Dropdown(
|
74 |
-
choices=['
|
75 |
label="Select Time Interval"
|
76 |
)
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# Input fields for user data
|
79 |
previous_lat_lon = gr.Textbox(
|
80 |
placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)",
|
@@ -115,7 +150,7 @@ with gr.Blocks() as cyclone_predictor:
|
|
115 |
except Exception as e:
|
116 |
return str(e)
|
117 |
|
118 |
-
predict_button = gr.Button("Predict
|
119 |
|
120 |
# Linking function to UI elements
|
121 |
predict_button.click(
|
|
|
17 |
'30 hours': 'lr_30H_lat_lon.pkl',
|
18 |
'33 hours': 'lr_33H_lat_lon.pkl',
|
19 |
'36 hours': 'lr_36H_lat_lon.pkl'
|
20 |
+
},
|
21 |
+
'Speed': {
|
22 |
+
'3 hours': 'Igbm_3H_speed.pkl',
|
23 |
+
'15 hours': 'Igbm_15H_speed.pkl',
|
24 |
+
'27 hours': 'Igbm_27H_speed.pkl'
|
25 |
}
|
26 |
}
|
27 |
|
|
|
34 |
'12 hours': 'lr_12H_lat_lon_scaler.pkl',
|
35 |
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
36 |
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
37 |
+
'21 hours': 'lr_21H_lat_lon_scaler.pkl',
|
38 |
'24 hours': 'lr_24H_lat_lon_scaler.pkl',
|
39 |
'27 hours': 'lr_27H_lat_lon_scaler.pkl',
|
40 |
'30 hours': 'lr_30H_lat_lon_scaler.pkl',
|
41 |
'33 hours': 'lr_33H_lat_lon_scaler.pkl',
|
42 |
'36 hours': 'lr_36H_lat_lon_scaler.pkl'
|
43 |
+
},
|
44 |
+
'Speed': {
|
45 |
+
'3 hours': 'Igbm_speed_scaler_3H.pkl',
|
46 |
+
'15 hours': 'Igbm_speed_scaler_15H.pkl',
|
47 |
+
'27 hours': 'Igbm_speed_scaler_27H.pkl'
|
48 |
}
|
49 |
}
|
50 |
|
51 |
+
# Define time intervals for each prediction type
|
52 |
+
time_intervals = {
|
53 |
+
'Path': ['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
54 |
+
'Speed': ['3 hours', '15 hours', '27 hours']
|
55 |
+
}
|
56 |
+
|
57 |
+
def process_input(input_data, scaler, prediction_type):
|
58 |
input_data = np.array(input_data).reshape(-1, 7)
|
59 |
+
if prediction_type == 'Speed':
|
60 |
+
# For speed prediction, reshape accordingly
|
61 |
+
input_data = input_data[:2].reshape(1, 2, 7)
|
62 |
+
processed_data = input_data.reshape(-1, 14)
|
63 |
+
else: # Path
|
64 |
+
processed_data = input_data[:2].reshape(1, -1)
|
65 |
processed_data = scaler.transform(processed_data)
|
66 |
return processed_data
|
67 |
|
|
|
72 |
scaler = joblib.load(scaler_paths[prediction_type][time_interval])
|
73 |
|
74 |
# Process input and predict
|
75 |
+
processed_data = process_input(input_data, scaler, prediction_type)
|
76 |
prediction = model.predict(processed_data)
|
77 |
|
78 |
if prediction_type == 'Path':
|
79 |
return f"Predicted Path after {time_interval}: Latitude: {prediction[0][0]}, Longitude: {prediction[0][1]}"
|
80 |
+
elif prediction_type == 'Speed':
|
81 |
+
return f"Predicted Speed after {time_interval}: {prediction[0]}"
|
82 |
except Exception as e:
|
83 |
return str(e)
|
84 |
|
85 |
# Gradio interface components
|
86 |
with gr.Blocks() as cyclone_predictor:
|
87 |
+
gr.Markdown("# Cyclone Path and Speed Prediction App")
|
88 |
|
89 |
# Dropdown for Prediction Type
|
90 |
prediction_type = gr.Dropdown(
|
91 |
+
choices=['Path', 'Speed'],
|
92 |
value='Path',
|
93 |
label="Select Prediction Type"
|
94 |
)
|
95 |
|
96 |
# Dropdown for Time Interval
|
97 |
time_interval = gr.Dropdown(
|
98 |
+
choices=time_intervals['Path'],
|
99 |
label="Select Time Interval"
|
100 |
)
|
101 |
|
102 |
+
# Function to update time intervals based on prediction type
|
103 |
+
def update_time_intervals(prediction_type):
|
104 |
+
return gr.Dropdown.update(choices=time_intervals[prediction_type])
|
105 |
+
|
106 |
+
# Update time intervals when prediction type changes
|
107 |
+
prediction_type.change(
|
108 |
+
fn=update_time_intervals,
|
109 |
+
inputs=prediction_type,
|
110 |
+
outputs=time_interval
|
111 |
+
)
|
112 |
+
|
113 |
# Input fields for user data
|
114 |
previous_lat_lon = gr.Textbox(
|
115 |
placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)",
|
|
|
150 |
except Exception as e:
|
151 |
return str(e)
|
152 |
|
153 |
+
predict_button = gr.Button("Predict")
|
154 |
|
155 |
# Linking function to UI elements
|
156 |
predict_button.click(
|