Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import joblib
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Define model paths
|
| 6 |
model_paths = {
|
|
@@ -54,55 +57,44 @@ def load_model_and_predict(prediction_type, time_interval, input_data):
|
|
| 54 |
prediction = model.predict(processed_data)
|
| 55 |
|
| 56 |
if prediction_type == 'Path':
|
| 57 |
-
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
return str(e)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Gradio interface components
|
| 62 |
with gr.Blocks() as cyclone_predictor:
|
| 63 |
gr.Markdown("# Cyclone Path Prediction App")
|
| 64 |
|
| 65 |
-
|
| 66 |
-
prediction_type = gr.Dropdown(
|
| 67 |
-
choices=['Path'],
|
| 68 |
-
value='Path',
|
| 69 |
-
label="Select Prediction Type"
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
# Dropdown for Time Interval
|
| 73 |
time_interval = gr.Dropdown(
|
| 74 |
choices=['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
| 75 |
label="Select Time Interval"
|
| 76 |
)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
placeholder="Enter previous 3-hour timestamp (e.g., 2024,10,23,0)",
|
| 86 |
-
label="Previous 3-hour Timestamp (year, month, day, hour)"
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
present_lat_lon = gr.Textbox(
|
| 90 |
-
placeholder="Enter present 3-hour lat/lon (e.g., 15.71,90.29)",
|
| 91 |
-
label="Present 3-hour Latitude/Longitude"
|
| 92 |
-
)
|
| 93 |
-
present_speed = gr.Number(label="Present 3-hour Speed") # Removed placeholder
|
| 94 |
-
present_timestamp = gr.Textbox(
|
| 95 |
-
placeholder="Enter present 3-hour timestamp (e.g., 2024,10,23,3)",
|
| 96 |
-
label="Present 3-hour Timestamp (year, month, day, hour)"
|
| 97 |
-
)
|
| 98 |
|
| 99 |
-
# Output prediction
|
| 100 |
prediction_output = gr.Textbox(label="Prediction Output")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
def get_input_data(previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp):
|
| 104 |
try:
|
| 105 |
-
# Parse inputs into required format
|
| 106 |
prev_lat, prev_lon = map(float, previous_lat_lon.split(','))
|
| 107 |
prev_time = list(map(int, previous_timestamp.split(',')))
|
| 108 |
previous_data = [prev_lat, prev_lon, previous_speed] + prev_time
|
|
@@ -117,13 +109,12 @@ with gr.Blocks() as cyclone_predictor:
|
|
| 117 |
|
| 118 |
predict_button = gr.Button("Predict Path")
|
| 119 |
|
| 120 |
-
# Linking function to UI elements
|
| 121 |
predict_button.click(
|
| 122 |
fn=lambda pt, ti, p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time: load_model_and_predict(
|
| 123 |
pt, ti, get_input_data(p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time)
|
| 124 |
),
|
| 125 |
inputs=[prediction_type, time_interval, previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp],
|
| 126 |
-
outputs=prediction_output
|
| 127 |
)
|
| 128 |
|
| 129 |
-
cyclone_predictor.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import joblib
|
| 4 |
+
import folium
|
| 5 |
+
from folium import Map, Marker
|
| 6 |
+
from io import BytesIO
|
| 7 |
|
| 8 |
# Define model paths
|
| 9 |
model_paths = {
|
|
|
|
| 57 |
prediction = model.predict(processed_data)
|
| 58 |
|
| 59 |
if prediction_type == 'Path':
|
| 60 |
+
latitude, longitude = prediction[0][0], prediction[0][1]
|
| 61 |
+
return f"Predicted Path after {time_interval}: Latitude: {latitude}, Longitude: {longitude}", display_map(latitude, longitude)
|
| 62 |
except Exception as e:
|
| 63 |
return str(e)
|
| 64 |
|
| 65 |
+
def display_map(latitude, longitude):
|
| 66 |
+
# Create a map centered around the predicted coordinates
|
| 67 |
+
m = folium.Map(location=[latitude, longitude], zoom_start=6)
|
| 68 |
+
folium.Marker([latitude, longitude], tooltip="Predicted Location").add_to(m)
|
| 69 |
+
|
| 70 |
+
# Save map as HTML and load in Gradio
|
| 71 |
+
map_data = BytesIO()
|
| 72 |
+
m.save(map_data, close_file=False)
|
| 73 |
+
return map_data
|
| 74 |
+
|
| 75 |
# Gradio interface components
|
| 76 |
with gr.Blocks() as cyclone_predictor:
|
| 77 |
gr.Markdown("# Cyclone Path Prediction App")
|
| 78 |
|
| 79 |
+
prediction_type = gr.Dropdown(choices=['Path'], value='Path', label="Select Prediction Type")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
time_interval = gr.Dropdown(
|
| 81 |
choices=['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
| 82 |
label="Select Time Interval"
|
| 83 |
)
|
| 84 |
|
| 85 |
+
previous_lat_lon = gr.Textbox(placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)", label="Previous 3-hour Latitude/Longitude")
|
| 86 |
+
previous_speed = gr.Number(label="Previous 3-hour Speed")
|
| 87 |
+
previous_timestamp = gr.Textbox(placeholder="Enter previous 3-hour timestamp (e.g., 2024,10,23,0)", label="Previous 3-hour Timestamp (year, month, day, hour)")
|
| 88 |
+
|
| 89 |
+
present_lat_lon = gr.Textbox(placeholder="Enter present 3-hour lat/lon (e.g., 15.71,90.29)", label="Present 3-hour Latitude/Longitude")
|
| 90 |
+
present_speed = gr.Number(label="Present 3-hour Speed")
|
| 91 |
+
present_timestamp = gr.Textbox(placeholder="Enter present 3-hour timestamp (e.g., 2024,10,23,3)", label="Present 3-hour Timestamp (year, month, day, hour)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
|
|
|
| 93 |
prediction_output = gr.Textbox(label="Prediction Output")
|
| 94 |
+
map_output = gr.HTML(label="Predicted Location Map")
|
| 95 |
+
|
| 96 |
def get_input_data(previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp):
|
| 97 |
try:
|
|
|
|
| 98 |
prev_lat, prev_lon = map(float, previous_lat_lon.split(','))
|
| 99 |
prev_time = list(map(int, previous_timestamp.split(',')))
|
| 100 |
previous_data = [prev_lat, prev_lon, previous_speed] + prev_time
|
|
|
|
| 109 |
|
| 110 |
predict_button = gr.Button("Predict Path")
|
| 111 |
|
|
|
|
| 112 |
predict_button.click(
|
| 113 |
fn=lambda pt, ti, p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time: load_model_and_predict(
|
| 114 |
pt, ti, get_input_data(p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time)
|
| 115 |
),
|
| 116 |
inputs=[prediction_type, time_interval, previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp],
|
| 117 |
+
outputs=[prediction_output, map_output]
|
| 118 |
)
|
| 119 |
|
| 120 |
+
cyclone_predictor.launch()
|