Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import joblib
|
4 |
-
from sklearn.preprocessing import StandardScaler
|
5 |
-
import os
|
6 |
|
7 |
# Define model paths
|
8 |
model_paths = {
|
9 |
'Path': {
|
10 |
-
'3 hours': '
|
11 |
-
'6 hours': '
|
12 |
-
'9 hours': '
|
13 |
-
|
14 |
-
|
15 |
-
'
|
16 |
-
'
|
17 |
-
'
|
18 |
-
|
19 |
-
|
20 |
-
'
|
21 |
-
'
|
22 |
-
'9 hours': 'path_to_9H_pressure_model.pkl'
|
23 |
}
|
24 |
}
|
25 |
|
26 |
# Define scaler paths
|
27 |
scaler_paths = {
|
28 |
'Path': {
|
29 |
-
'3 hours': '
|
30 |
-
'6 hours': '
|
31 |
-
'9 hours': '
|
32 |
-
|
33 |
-
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'
|
37 |
-
|
38 |
-
|
39 |
-
'
|
40 |
-
'6 hours': 'path_to_6H_pressure_scaler.pkl',
|
41 |
-
'9 hours': 'path_to_9H_pressure_scaler.pkl'
|
42 |
}
|
43 |
}
|
44 |
|
@@ -59,46 +54,75 @@ def load_model_and_predict(prediction_type, time_interval, input_data):
|
|
59 |
prediction = model.predict(processed_data)
|
60 |
|
61 |
if prediction_type == 'Path':
|
62 |
-
return f"Predicted Latitude: {prediction[0][0]},
|
63 |
-
elif prediction_type == 'Speed':
|
64 |
-
return f"Predicted Speed: {prediction[0]}"
|
65 |
-
elif prediction_type == 'Pressure':
|
66 |
-
return f"Predicted Pressure: {prediction[0]}"
|
67 |
except Exception as e:
|
68 |
return str(e)
|
69 |
|
70 |
# Gradio interface components
|
71 |
with gr.Blocks() as cyclone_predictor:
|
72 |
-
gr.Markdown("# Cyclone Prediction App")
|
73 |
|
74 |
# Dropdown for Prediction Type
|
75 |
prediction_type = gr.Dropdown(
|
76 |
-
choices=['Path'
|
|
|
77 |
label="Select Prediction Type"
|
78 |
)
|
79 |
|
80 |
# Dropdown for Time Interval
|
81 |
time_interval = gr.Dropdown(
|
82 |
-
choices=['3 hours', '6 hours', '9 hours'],
|
83 |
label="Select Time Interval"
|
84 |
)
|
85 |
|
86 |
# Input fields for user data
|
87 |
-
|
88 |
-
placeholder="Enter
|
89 |
-
label="
|
90 |
)
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Output prediction
|
93 |
prediction_output = gr.Textbox(label="Prediction Output")
|
94 |
|
95 |
# Predict button
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# Linking function to UI elements
|
99 |
predict_button.click(
|
100 |
-
load_model_and_predict
|
101 |
-
|
|
|
|
|
102 |
outputs=prediction_output
|
103 |
)
|
104 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import joblib
|
|
|
|
|
4 |
|
5 |
# Define model paths
|
6 |
model_paths = {
|
7 |
'Path': {
|
8 |
+
'3 hours': 'lr_3H_lat_lon.pkl',
|
9 |
+
'6 hours': 'lr_6H_lat_lon.pkl',
|
10 |
+
'9 hours': 'lr_9H_lat_lon.pkl',
|
11 |
+
'12 hours': 'lr_12H_lat_lon.pkl',
|
12 |
+
'15 hours': 'lr_15H_lat_lon.pkl',
|
13 |
+
'18 hours': 'lr_18H_lat_lon.pkl',
|
14 |
+
'21 hours': 'lr_21H_lat_lon.pkl',
|
15 |
+
'24 hours': 'lr_24H_lat_lon.pkl',
|
16 |
+
'27 hours': 'lr_27H_lat_lon.pkl',
|
17 |
+
'30 hours': 'lr_30H_lat_lon.pkl',
|
18 |
+
'33 hours': 'lr_33H_lat_lon.pkl',
|
19 |
+
'36 hours': 'lr_36H_lat_lon.pkl'
|
|
|
20 |
}
|
21 |
}
|
22 |
|
23 |
# Define scaler paths
|
24 |
scaler_paths = {
|
25 |
'Path': {
|
26 |
+
'3 hours': 'lr_3H_lat_lon_scaler.pkl',
|
27 |
+
'6 hours': 'lr_6H_lat_lon_scaler.pkl',
|
28 |
+
'9 hours': 'lr_9H_lat_lon_scaler.pkl',
|
29 |
+
'12 hours': 'lr_12H_lat_lon_scaler.pkl',
|
30 |
+
'15 hours': 'lr_15H_lat_lon_scaler.pkl',
|
31 |
+
'18 hours': 'lr_18H_lat_lon_scaler.pkl',
|
32 |
+
'24 hours': 'lr_24H_lat_lon_scaler.pkl',
|
33 |
+
'27 hours': 'lr_27H_lat_lon_scaler.pkl',
|
34 |
+
'30 hours': 'lr_30H_lat_lon_scaler.pkl',
|
35 |
+
'33 hours': 'lr_33H_lat_lon_scaler.pkl',
|
36 |
+
'36 hours': 'lr_36H_lat_lon_scaler.pkl'
|
|
|
|
|
37 |
}
|
38 |
}
|
39 |
|
|
|
54 |
prediction = model.predict(processed_data)
|
55 |
|
56 |
if prediction_type == 'Path':
|
57 |
+
return f"Predicted Path after {time_interval}: Latitude: {prediction[0][0]}, Longitude: {prediction[0][1]}"
|
|
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
return str(e)
|
60 |
|
61 |
# Gradio interface components
|
62 |
with gr.Blocks() as cyclone_predictor:
|
63 |
+
gr.Markdown("# Cyclone Path Prediction App")
|
64 |
|
65 |
# Dropdown for Prediction Type
|
66 |
prediction_type = gr.Dropdown(
|
67 |
+
choices=['Path'],
|
68 |
+
value='Path',
|
69 |
label="Select Prediction Type"
|
70 |
)
|
71 |
|
72 |
# Dropdown for Time Interval
|
73 |
time_interval = gr.Dropdown(
|
74 |
+
choices=['3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'],
|
75 |
label="Select Time Interval"
|
76 |
)
|
77 |
|
78 |
# Input fields for user data
|
79 |
+
previous_lat_lon = gr.Textbox(
|
80 |
+
placeholder="Enter previous 3-hour lat/lon (e.g., 15.54,90.64)",
|
81 |
+
label="Previous 3-hour Latitude/Longitude"
|
82 |
)
|
83 |
+
previous_speed = gr.Number(label="Previous 3-hour Speed", placeholder="e.g., 31")
|
84 |
+
previous_timestamp = gr.Textbox(
|
85 |
+
placeholder="Enter previous 3-hour timestamp (e.g., 2024,10,23,0)",
|
86 |
+
label="Previous 3-hour Timestamp (year, month, day, hour)"
|
87 |
+
)
|
88 |
+
|
89 |
+
present_lat_lon = gr.Textbox(
|
90 |
+
placeholder="Enter present 3-hour lat/lon (e.g., 15.71,90.29)",
|
91 |
+
label="Present 3-hour Latitude/Longitude"
|
92 |
+
)
|
93 |
+
present_speed = gr.Number(label="Present 3-hour Speed", placeholder="e.g., 32")
|
94 |
+
present_timestamp = gr.Textbox(
|
95 |
+
placeholder="Enter present 3-hour timestamp (e.g., 2024,10,23,3)",
|
96 |
+
label="Present 3-hour Timestamp (year, month, day, hour)"
|
97 |
+
)
|
98 |
+
|
99 |
# Output prediction
|
100 |
prediction_output = gr.Textbox(label="Prediction Output")
|
101 |
|
102 |
# Predict button
|
103 |
+
def get_input_data(previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp):
|
104 |
+
try:
|
105 |
+
# Parse inputs into required format
|
106 |
+
prev_lat, prev_lon = map(float, previous_lat_lon.split(','))
|
107 |
+
prev_time = list(map(int, previous_timestamp.split(',')))
|
108 |
+
previous_data = [prev_lat, prev_lon, previous_speed] + prev_time
|
109 |
+
|
110 |
+
present_lat, present_lon = map(float, present_lat_lon.split(','))
|
111 |
+
present_time = list(map(int, present_timestamp.split(',')))
|
112 |
+
present_data = [present_lat, present_lon, present_speed] + present_time
|
113 |
+
|
114 |
+
return [previous_data, present_data]
|
115 |
+
except Exception as e:
|
116 |
+
return str(e)
|
117 |
+
|
118 |
+
predict_button = gr.Button("Predict Path")
|
119 |
|
120 |
# Linking function to UI elements
|
121 |
predict_button.click(
|
122 |
+
fn=lambda pt, ti, p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time: load_model_and_predict(
|
123 |
+
pt, ti, get_input_data(p_lat_lon, p_speed, p_time, c_lat_lon, c_speed, c_time)
|
124 |
+
),
|
125 |
+
inputs=[prediction_type, time_interval, previous_lat_lon, previous_speed, previous_timestamp, present_lat_lon, present_speed, present_timestamp],
|
126 |
outputs=prediction_output
|
127 |
)
|
128 |
|