Abrar20's picture
Create app.py
ef7cd1b verified
raw
history blame
3.35 kB
import gradio as gr
import numpy as np
import joblib
from sklearn.preprocessing import StandardScaler
import os
# Define model paths
model_paths = {
'Path': {
'3 hours': 'path_to_3H_model.pkl',
'6 hours': 'path_to_6H_model.pkl',
'9 hours': 'path_to_9H_model.pkl'
},
'Speed': {
'3 hours': 'path_to_3H_speed_model.pkl',
'6 hours': 'path_to_6H_speed_model.pkl',
'9 hours': 'path_to_9H_speed_model.pkl'
},
'Pressure': {
'3 hours': 'path_to_3H_pressure_model.pkl',
'6 hours': 'path_to_6H_pressure_model.pkl',
'9 hours': 'path_to_9H_pressure_model.pkl'
}
}
# Define scaler paths
scaler_paths = {
'Path': {
'3 hours': 'path_to_3H_scaler.pkl',
'6 hours': 'path_to_6H_scaler.pkl',
'9 hours': 'path_to_9H_scaler.pkl'
},
'Speed': {
'3 hours': 'path_to_3H_speed_scaler.pkl',
'6 hours': 'path_to_6H_speed_scaler.pkl',
'9 hours': 'path_to_9H_speed_scaler.pkl'
},
'Pressure': {
'3 hours': 'path_to_3H_pressure_scaler.pkl',
'6 hours': 'path_to_6H_pressure_scaler.pkl',
'9 hours': 'path_to_9H_pressure_scaler.pkl'
}
}
def process_input(input_data, scaler):
input_data = np.array(input_data).reshape(-1, 7)
processed_data = input_data[:2].reshape(1, -1)
processed_data = scaler.transform(processed_data)
return processed_data
def load_model_and_predict(prediction_type, time_interval, input_data):
try:
# Load the model and scaler based on user selection
model = joblib.load(model_paths[prediction_type][time_interval])
scaler = joblib.load(scaler_paths[prediction_type][time_interval])
# Process input and predict
processed_data = process_input(input_data, scaler)
prediction = model.predict(processed_data)
if prediction_type == 'Path':
return f"Predicted Latitude: {prediction[0][0]}, Predicted Longitude: {prediction[0][1]}"
elif prediction_type == 'Speed':
return f"Predicted Speed: {prediction[0]}"
elif prediction_type == 'Pressure':
return f"Predicted Pressure: {prediction[0]}"
except Exception as e:
return str(e)
# Gradio interface components
with gr.Blocks() as cyclone_predictor:
gr.Markdown("# Cyclone Prediction App")
# Dropdown for Prediction Type
prediction_type = gr.Dropdown(
choices=['Path', 'Speed', 'Pressure'],
label="Select Prediction Type"
)
# Dropdown for Time Interval
time_interval = gr.Dropdown(
choices=['3 hours', '6 hours', '9 hours'],
label="Select Time Interval"
)
# Input fields for user data
input_data = gr.Textbox(
placeholder="Enter cyclone data as list of lists, e.g., [[15.54,90.64,31,2024,10,23,0], [15.71,90.29,32,2024,10,23,3]]",
label="Input Cyclone Data (2 rows required)"
)
# Output prediction
prediction_output = gr.Textbox(label="Prediction Output")
# Predict button
predict_button = gr.Button("Predict")
# Linking function to UI elements
predict_button.click(
load_model_and_predict,
inputs=[prediction_type, time_interval, input_data],
outputs=prediction_output
)
cyclone_predictor.launch()