Spaces:
Sleeping
Sleeping
File size: 4,411 Bytes
83616b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import random
import time
# thresholds for soil moisture (in %)
PRIMARY_THRESHOLD = 30 # Below this, irrigation is necessary
SECONDARY_THRESHOLD = 20 # Below this, irrigation is critical
def calculate_irrigation_runtime(soil_moisture):
"""Calculate irrigation runtime based on soil moisture."""
if soil_moisture < SECONDARY_THRESHOLD:
return 10 # Critical moisture, longer irrigation
elif soil_moisture < PRIMARY_THRESHOLD:
return 7 # Moderate moisture, shorter irrigation
else:
return 0 # No irrigation needed
def irrigation_decision(soil_moisture, rainfall_prediction):
if soil_moisture < SECONDARY_THRESHOLD:
if rainfall_prediction == "Yes":
return "Irrigation ON π§οΈπΏ (Critical soil moisture)"
else:
return "Irrigation ON πΏ (Critical soil moisture)"
elif soil_moisture < PRIMARY_THRESHOLD:
if rainfall_prediction == "Yes":
return "Irrigation OFF β (Rainfall expected, conserving water)"
else:
return "Irrigation ON πΏ (Low soil moisture)"
else:
return "Irrigation OFF β (Soil moisture sufficient)"
def simulate_values_and_runtime():
# Show loading message for data collection
yield "Collecting data from IoT device... ππ‘", "", "", "", ""
time.sleep(2) # Simulate delay for fetching data
# Simulate IoT data
simulated_moisture = random.uniform(10, 50)
rainfall_prediction = random.choice(["Yes", "No"])
decision = irrigation_decision(simulated_moisture, rainfall_prediction)
# Display simulated data and initial decision
yield "", f"{simulated_moisture:.2f}", rainfall_prediction, decision, ""
# Simulate irrigation runtime if irrigation is ON
if "Irrigation ON" in decision:
runtime = calculate_irrigation_runtime(simulated_moisture)
if runtime > 0:
for minute in range(1, runtime + 1):
time.sleep(1) # Simulate a minute as 1 second for demonstration
status = f"Irrigation running... β³ ({minute}/{runtime} minutes)"
yield "", f"{simulated_moisture:.2f}", rainfall_prediction, decision, status
# Turn off irrigation after the duration
yield "", f"{simulated_moisture:.2f}", rainfall_prediction, decision, "Irrigation OFF β (Completed runtime)"
else:
yield "", f"{simulated_moisture:.2f}", rainfall_prediction, decision, "Irrigation remains OFF β"
def app(soil_moisture, rainfall_prediction):
decision = irrigation_decision(float(soil_moisture), rainfall_prediction)
return decision
# Gradio Interface
with gr.Blocks(title="Smart Irrigation System π±π§") as demo:
gr.Markdown("# Smart Irrigation System π±π§")
gr.Markdown(
"""
This app helps farmers optimize water usage by predicting irrigation needs based on soil moisture and rainfall forecast for Dinajpur.
"""
)
with gr.Row():
soil_moisture_input = gr.Slider(
minimum=0,
maximum=100,
step=1,
label="π‘οΈ Soil Moisture (%)",
value=30
)
rainfall_prediction_input = gr.Radio(
["Yes", "No"], label="π§οΈ Rainfall Prediction for Dinajpur", value="No"
)
decision_output = gr.Textbox(label="π‘ Irrigation Decision")
simulate_button = gr.Button("Simulate IoT Data & Runtime πβ³")
collecting_data_output = gr.Textbox(label="Status")
simulate_output_moisture = gr.Textbox(label="Simulated Soil Moisture (%)")
simulate_output_rainfall = gr.Textbox(label="Simulated Rainfall Prediction")
simulate_decision_output = gr.Textbox(label="Simulated Irrigation Decision")
irrigation_runtime_output = gr.Textbox(label="Irrigation Runtime Status")
with gr.Row():
submit_button = gr.Button("Submit π")
# Function connections
submit_button.click(
app, inputs=[soil_moisture_input, rainfall_prediction_input], outputs=[decision_output]
)
simulate_button.click(
simulate_values_and_runtime,
inputs=[],
outputs=[
collecting_data_output,
simulate_output_moisture,
simulate_output_rainfall,
simulate_decision_output,
irrigation_runtime_output
]
)
# Launch the app
demo.launch()
|