File size: 9,161 Bytes
8fc219d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import numpy as np
import cv2
import tensorflow as tf
import torch
from PIL import Image

# ============== HF Transformers / ViT Model ==============
from transformers import ViTImageProcessor, ViTForImageClassification

# ----------- 1. Load the ViT model & processor ------------
vit_processor = ViTImageProcessor.from_pretrained('wambugu1738/crop_leaf_diseases_vit')
vit_model = ViTForImageClassification.from_pretrained(
    'wambugu1738/crop_leaf_diseases_vit',
    ignore_mismatched_sizes=True
)

# Define label-to-treatment text (Example for demonstration)
vit_label_treatment = {
    # The HF model was originally for "Corn, Potato, Rice, Wheat diseases". 
    # If it can predict more, add them here.
    "Corn___Common_rust": "Use recommended fungicides and ensure crop rotation.",
    "Corn___Cercospora_leaf_spot": "Apply foliar fungicides; ensure good field sanitation.",
    "Potato___Early_blight": "Apply preventive fungicides; remove infected debris.",
    "Potato___Late_blight": "Use certified seed tubers; fungicide sprays when conditions favor disease.",
    "Rice___Leaf_blight": "Use resistant rice varieties, maintain field hygiene.",
    "Wheat___Leaf_rust": "Plant resistant wheat varieties, apply foliar fungicides if severe.",
    # Fallback
    "Unknown": "No specific treatment available."
}

def classify_image_vit(image):
    # Convert to PIL Image in case input is numpy
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image.astype('uint8'), 'RGB')
    inputs = vit_processor(images=image, return_tensors="pt")
    outputs = vit_model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()

    # Predicted label
    predicted_label = vit_model.config.id2label.get(predicted_class_idx, "Unknown")
    # Example: If your id2label from HF is something like "corn diseased" or "rice healthy",
    # match it to the dictionary key for treatments (above). For demonstration:
    treatment_text = vit_label_treatment.get(predicted_label, "No specific treatment available.")
    return predicted_label, treatment_text


# ============== TensorFlow Model (plant_model_v5-beta.h5) ==============
# Load the model
keras_model = tf.keras.models.load_model('plant_model_v5-beta.h5')

# Define the class names
class_names = {
    0: 'Apple___Apple_scab',
    1: 'Apple___Black_rot',
    2: 'Apple___Cedar_apple_rust',
    3: 'Apple___healthy',
    4: 'Not a plant',
    5: 'Blueberry___healthy',
    6: 'Cherry___Powdery_mildew',
    7: 'Cherry___healthy',
    8: 'Corn___Cercospora_leaf_spot Gray_leaf_spot',
    9: 'Corn___Common_rust',
    10: 'Corn___Northern_Leaf_Blight',
    11: 'Corn___healthy',
    12: 'Grape___Black_rot',
    13: 'Grape___Esca_(Black_Measles)',
    14: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
    15: 'Grape___healthy',
    16: 'Orange___Haunglongbing_(Citrus_greening)',
    17: 'Peach___Bacterial_spot',
    18: 'Peach___healthy',
    19: 'Pepper,_bell___Bacterial_spot',
    20: 'Pepper,_bell___healthy',
    21: 'Potato___Early_blight',
    22: 'Potato___Late_blight',
    23: 'Potato___healthy',
    24: 'Raspberry___healthy',
    25: 'Soybean___healthy',
    26: 'Squash___Powdery_mildew',
    27: 'Strawberry___Leaf_scorch',
    28: 'Strawberry___healthy',
    29: 'Tomato___Bacterial_spot',
    30: 'Tomato___Early_blight',
    31: 'Tomato___Late_blight',
    32: 'Tomato___Leaf_Mold',
    33: 'Tomato___Septoria_leaf_spot',
    34: 'Tomato___Spider_mites Two-spotted_spider_mite',
    35: 'Tomato___Target_Spot',
    36: 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
    37: 'Tomato___Tomato_mosaic_virus',
    38: 'Tomato___healthy'
}

# Example dictionary of "treatments" for some classes
keras_treatments = {
    'Apple___Apple_scab': "Remove fallen leaves, apply fungicides.",
    'Apple___Black_rot': "Prune out dead branches; apply copper-based fungicide.",
    'Corn___Common_rust': "Use resistant hybrids; apply fungicide if needed.",
    'Corn___Cercospora_leaf_spot Gray_leaf_spot': "Rotate crops; use foliar fungicides.",
    'Potato___Early_blight': "Use certified seeds; apply preventative fungicides.",
    'Tomato___Target_Spot': "Use resistant varieties and mulches to reduce disease.",
    # Fallback:
    'Unknown': "No specific treatment available."
}

def edge_and_cut(img, threshold1, threshold2):
    emb_img = img.copy()
    edges = cv2.Canny(img, threshold1, threshold2)
    edge_coors = []
    for i in range(edges.shape[0]):
        for j in range(edges.shape[1]):
            if edges[i][j] != 0:
                edge_coors.append((i, j))

    if len(edge_coors) == 0:
        return emb_img

    row_min = edge_coors[np.argsort([coor[0] for coor in edge_coors])[0]][0]
    row_max = edge_coors[np.argsort([coor[0] for coor in edge_coors])[-1]][0]
    col_min = edge_coors[np.argsort([coor[1] for coor in edge_coors])[0]][1]
    col_max = edge_coors[np.argsort([coor[1] for coor in edge_coors])[-1]][1]
    new_img = img[row_min:row_max, col_min:col_max]

    # Simple bounding box in white
    emb_color = np.array([255], dtype=np.uint8)
    emb_img[row_min-10:row_min+10, col_min:col_max] = emb_color
    emb_img[row_max-10:row_max+10, col_min:col_max] = emb_color
    emb_img[row_min:row_max, col_min-10:col_min+10] = emb_color
    emb_img[row_min:row_max, col_max-10:col_max+10] = emb_color

    return emb_img

def classify_and_visualize_keras(image):
    # Preprocess the image
    img_array = tf.image.resize(image, [256, 256])
    img_array = tf.expand_dims(img_array, 0) / 255.0

    # Make a prediction
    prediction = keras_model.predict(img_array)
    predicted_class_idx = tf.argmax(prediction[0], axis=-1).numpy()
    confidence = np.max(prediction[0])
    
    # Obtain the predicted label
    predicted_label = class_names.get(predicted_class_idx, "Unknown")

    if confidence < 0.60:
        class_name = "Uncertain / Not in dataset"
        bounded_image = image
        treatment_text = "No treatment recommendation (uncertain prediction)."
    else:
        class_name = predicted_label
        bounded_image = edge_and_cut(image, 200, 400)
        treatment_text = keras_treatments.get(predicted_label, "No specific treatment available.")
    
    return class_name, float(confidence), bounded_image, treatment_text


# ============== Combined Gradio App ==============
def main_model_selector(model_choice, image):
    """
    Dispatch function based on user choice of model:
      - 'Vit-model (Corn/Potato/Rice/Wheat)' -> use classify_image_vit
      - 'Keras-model (Apple/Blueberry/Cherry/etc.)' -> use classify_and_visualize_keras
    """
    if image is None:
        return "No image provided.", None, None, None
    
    if model_choice == "ViT (Corn, Potato, Rice, Wheat)":
        # Return: label, treatment
        predicted_label, treatment_text = classify_image_vit(image)
        # For consistency with the Keras model outputs, 
        # we'll keep placeholders for confidence & bounding box
        return predicted_label, None, image, treatment_text
    
    elif model_choice == "Keras (Apple, Blueberry, Cherry, etc.)":
        # Return: class_name, confidence, bounded_image, treatment_text
        class_name, confidence, bounded_image, treatment_text = classify_and_visualize_keras(image)
        return class_name, confidence, bounded_image, treatment_text
    
    else:
        return "Invalid model choice.", None, None, None


# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# **Plant Disease Detection**")
    gr.Markdown(
        "Select which model you want to use, then upload an image to see the prediction, "
        "confidence (if applicable), bounding box (if applicable), and a suggested treatment."
    )

    with gr.Row():
        model_choice = gr.Radio(
            choices=["ViT (Corn, Potato, Rice, Wheat)", "Keras (Apple, Blueberry, Cherry, etc.)"],
            value="Keras (Apple, Blueberry, Cherry, etc.)",
            label="Select Model"
        )

    with gr.Row():
        inp_image = gr.Image(type="numpy", label="Upload Leaf Image")

    # Outputs
    with gr.Row():
        out_label = gr.Textbox(label="Predicted Class")
        out_confidence = gr.Textbox(label="Confidence (If Available)")
    out_bounded_image = gr.Image(label="Visualization (If Available)")
    out_treatment = gr.Textbox(label="Treatment Recommendation")

    # Button
    btn = gr.Button("Classify")

    # Function binding
    btn.click(
        fn=main_model_selector, 
        inputs=[model_choice, inp_image], 
        outputs=[out_label, out_confidence, out_bounded_image, out_treatment]
    )

    # Provide some example images
    gr.Examples(
        examples=[
            ["Keras (Apple, Blueberry, Cherry, etc.)", "corn.jpg"],
            ["Keras (Apple, Blueberry, Cherry, etc.)", "grot.jpg"],
            ["Keras (Apple, Blueberry, Cherry, etc.)", "Potato___Early_blight.jpg"],
            ["Keras (Apple, Blueberry, Cherry, etc.)", "Tomato___Target_Spot.jpg"],
            ["ViT (Corn, Potato, Rice, Wheat)", "corn.jpg"],
        ],
        inputs=[model_choice, inp_image]
    )

demo.launch(share=True)