Spaces:
Running
Running
File size: 9,161 Bytes
8fc219d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import numpy as np
import cv2
import tensorflow as tf
import torch
from PIL import Image
# ============== HF Transformers / ViT Model ==============
from transformers import ViTImageProcessor, ViTForImageClassification
# ----------- 1. Load the ViT model & processor ------------
vit_processor = ViTImageProcessor.from_pretrained('wambugu1738/crop_leaf_diseases_vit')
vit_model = ViTForImageClassification.from_pretrained(
'wambugu1738/crop_leaf_diseases_vit',
ignore_mismatched_sizes=True
)
# Define label-to-treatment text (Example for demonstration)
vit_label_treatment = {
# The HF model was originally for "Corn, Potato, Rice, Wheat diseases".
# If it can predict more, add them here.
"Corn___Common_rust": "Use recommended fungicides and ensure crop rotation.",
"Corn___Cercospora_leaf_spot": "Apply foliar fungicides; ensure good field sanitation.",
"Potato___Early_blight": "Apply preventive fungicides; remove infected debris.",
"Potato___Late_blight": "Use certified seed tubers; fungicide sprays when conditions favor disease.",
"Rice___Leaf_blight": "Use resistant rice varieties, maintain field hygiene.",
"Wheat___Leaf_rust": "Plant resistant wheat varieties, apply foliar fungicides if severe.",
# Fallback
"Unknown": "No specific treatment available."
}
def classify_image_vit(image):
# Convert to PIL Image in case input is numpy
if not isinstance(image, Image.Image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
inputs = vit_processor(images=image, return_tensors="pt")
outputs = vit_model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Predicted label
predicted_label = vit_model.config.id2label.get(predicted_class_idx, "Unknown")
# Example: If your id2label from HF is something like "corn diseased" or "rice healthy",
# match it to the dictionary key for treatments (above). For demonstration:
treatment_text = vit_label_treatment.get(predicted_label, "No specific treatment available.")
return predicted_label, treatment_text
# ============== TensorFlow Model (plant_model_v5-beta.h5) ==============
# Load the model
keras_model = tf.keras.models.load_model('plant_model_v5-beta.h5')
# Define the class names
class_names = {
0: 'Apple___Apple_scab',
1: 'Apple___Black_rot',
2: 'Apple___Cedar_apple_rust',
3: 'Apple___healthy',
4: 'Not a plant',
5: 'Blueberry___healthy',
6: 'Cherry___Powdery_mildew',
7: 'Cherry___healthy',
8: 'Corn___Cercospora_leaf_spot Gray_leaf_spot',
9: 'Corn___Common_rust',
10: 'Corn___Northern_Leaf_Blight',
11: 'Corn___healthy',
12: 'Grape___Black_rot',
13: 'Grape___Esca_(Black_Measles)',
14: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
15: 'Grape___healthy',
16: 'Orange___Haunglongbing_(Citrus_greening)',
17: 'Peach___Bacterial_spot',
18: 'Peach___healthy',
19: 'Pepper,_bell___Bacterial_spot',
20: 'Pepper,_bell___healthy',
21: 'Potato___Early_blight',
22: 'Potato___Late_blight',
23: 'Potato___healthy',
24: 'Raspberry___healthy',
25: 'Soybean___healthy',
26: 'Squash___Powdery_mildew',
27: 'Strawberry___Leaf_scorch',
28: 'Strawberry___healthy',
29: 'Tomato___Bacterial_spot',
30: 'Tomato___Early_blight',
31: 'Tomato___Late_blight',
32: 'Tomato___Leaf_Mold',
33: 'Tomato___Septoria_leaf_spot',
34: 'Tomato___Spider_mites Two-spotted_spider_mite',
35: 'Tomato___Target_Spot',
36: 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
37: 'Tomato___Tomato_mosaic_virus',
38: 'Tomato___healthy'
}
# Example dictionary of "treatments" for some classes
keras_treatments = {
'Apple___Apple_scab': "Remove fallen leaves, apply fungicides.",
'Apple___Black_rot': "Prune out dead branches; apply copper-based fungicide.",
'Corn___Common_rust': "Use resistant hybrids; apply fungicide if needed.",
'Corn___Cercospora_leaf_spot Gray_leaf_spot': "Rotate crops; use foliar fungicides.",
'Potato___Early_blight': "Use certified seeds; apply preventative fungicides.",
'Tomato___Target_Spot': "Use resistant varieties and mulches to reduce disease.",
# Fallback:
'Unknown': "No specific treatment available."
}
def edge_and_cut(img, threshold1, threshold2):
emb_img = img.copy()
edges = cv2.Canny(img, threshold1, threshold2)
edge_coors = []
for i in range(edges.shape[0]):
for j in range(edges.shape[1]):
if edges[i][j] != 0:
edge_coors.append((i, j))
if len(edge_coors) == 0:
return emb_img
row_min = edge_coors[np.argsort([coor[0] for coor in edge_coors])[0]][0]
row_max = edge_coors[np.argsort([coor[0] for coor in edge_coors])[-1]][0]
col_min = edge_coors[np.argsort([coor[1] for coor in edge_coors])[0]][1]
col_max = edge_coors[np.argsort([coor[1] for coor in edge_coors])[-1]][1]
new_img = img[row_min:row_max, col_min:col_max]
# Simple bounding box in white
emb_color = np.array([255], dtype=np.uint8)
emb_img[row_min-10:row_min+10, col_min:col_max] = emb_color
emb_img[row_max-10:row_max+10, col_min:col_max] = emb_color
emb_img[row_min:row_max, col_min-10:col_min+10] = emb_color
emb_img[row_min:row_max, col_max-10:col_max+10] = emb_color
return emb_img
def classify_and_visualize_keras(image):
# Preprocess the image
img_array = tf.image.resize(image, [256, 256])
img_array = tf.expand_dims(img_array, 0) / 255.0
# Make a prediction
prediction = keras_model.predict(img_array)
predicted_class_idx = tf.argmax(prediction[0], axis=-1).numpy()
confidence = np.max(prediction[0])
# Obtain the predicted label
predicted_label = class_names.get(predicted_class_idx, "Unknown")
if confidence < 0.60:
class_name = "Uncertain / Not in dataset"
bounded_image = image
treatment_text = "No treatment recommendation (uncertain prediction)."
else:
class_name = predicted_label
bounded_image = edge_and_cut(image, 200, 400)
treatment_text = keras_treatments.get(predicted_label, "No specific treatment available.")
return class_name, float(confidence), bounded_image, treatment_text
# ============== Combined Gradio App ==============
def main_model_selector(model_choice, image):
"""
Dispatch function based on user choice of model:
- 'Vit-model (Corn/Potato/Rice/Wheat)' -> use classify_image_vit
- 'Keras-model (Apple/Blueberry/Cherry/etc.)' -> use classify_and_visualize_keras
"""
if image is None:
return "No image provided.", None, None, None
if model_choice == "ViT (Corn, Potato, Rice, Wheat)":
# Return: label, treatment
predicted_label, treatment_text = classify_image_vit(image)
# For consistency with the Keras model outputs,
# we'll keep placeholders for confidence & bounding box
return predicted_label, None, image, treatment_text
elif model_choice == "Keras (Apple, Blueberry, Cherry, etc.)":
# Return: class_name, confidence, bounded_image, treatment_text
class_name, confidence, bounded_image, treatment_text = classify_and_visualize_keras(image)
return class_name, confidence, bounded_image, treatment_text
else:
return "Invalid model choice.", None, None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# **Plant Disease Detection**")
gr.Markdown(
"Select which model you want to use, then upload an image to see the prediction, "
"confidence (if applicable), bounding box (if applicable), and a suggested treatment."
)
with gr.Row():
model_choice = gr.Radio(
choices=["ViT (Corn, Potato, Rice, Wheat)", "Keras (Apple, Blueberry, Cherry, etc.)"],
value="Keras (Apple, Blueberry, Cherry, etc.)",
label="Select Model"
)
with gr.Row():
inp_image = gr.Image(type="numpy", label="Upload Leaf Image")
# Outputs
with gr.Row():
out_label = gr.Textbox(label="Predicted Class")
out_confidence = gr.Textbox(label="Confidence (If Available)")
out_bounded_image = gr.Image(label="Visualization (If Available)")
out_treatment = gr.Textbox(label="Treatment Recommendation")
# Button
btn = gr.Button("Classify")
# Function binding
btn.click(
fn=main_model_selector,
inputs=[model_choice, inp_image],
outputs=[out_label, out_confidence, out_bounded_image, out_treatment]
)
# Provide some example images
gr.Examples(
examples=[
["Keras (Apple, Blueberry, Cherry, etc.)", "corn.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "grot.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "Potato___Early_blight.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "Tomato___Target_Spot.jpg"],
["ViT (Corn, Potato, Rice, Wheat)", "corn.jpg"],
],
inputs=[model_choice, inp_image]
)
demo.launch(share=True)
|