import torch import os import random import gradio as gr from transformers import pipeline import base64 from datasets import load_dataset from diffusers import DiffusionPipeline from huggingface_hub import login import numpy as np def guessanImage(model, image): imgclassifier = pipeline("image-classification", model=model) if image is not None: description = imgclassifier(image) return description def guessanAge(model, picture): imgclassifier = pipeline("image-classification", model=model) if image is not None: description = imgclassifier(image) return description radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier") tab1 = gr.Interface( fn=guessanImage, inputs=[radio1, gr.Image(type="pil")], outputs=["text"], ) radio2 = gr.Radio(["nateraw/vit-age-classifier"], label="Select an Age Classifier", info="Age Classifier") tab2 = gr.Interface( fn=guessanAge, inputs=[radio2, gr.Image(type="pil")], outputs=["text"], ) demo = gr.TabbedInterface([tab1, tab2], ["tab1", "tab2"]) demo.launch()