Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def guessanAge(model, image):
|
|
23 |
|
24 |
def text2speech(model, text):
|
25 |
if len(text) > 0:
|
26 |
-
synthesiser
|
27 |
|
28 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
29 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
@@ -32,7 +32,7 @@ def text2speech(model, text):
|
|
32 |
audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
|
33 |
audio_data_16bit = (audio_data * 32767).astype(np.int16)
|
34 |
|
35 |
-
return sampling_rate, audio_data_16bit
|
36 |
|
37 |
radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier")
|
38 |
tab1 = gr.Interface(
|
|
|
23 |
|
24 |
def text2speech(model, text):
|
25 |
if len(text) > 0:
|
26 |
+
synthesiser = pipeline("text-to-speech", model=model)
|
27 |
|
28 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
29 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
32 |
audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
|
33 |
audio_data_16bit = (audio_data * 32767).astype(np.int16)
|
34 |
|
35 |
+
return speech["sampling_rate"], audio_data_16bit
|
36 |
|
37 |
radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier")
|
38 |
tab1 = gr.Interface(
|