Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import torch
|
|
2 |
import os
|
3 |
import random
|
4 |
import gradio as gr
|
5 |
-
|
|
|
6 |
import base64
|
7 |
from datasets import load_dataset
|
8 |
from diffusers import DiffusionPipeline
|
@@ -28,12 +29,15 @@ def guessanAge(model, image):
|
|
28 |
def text2speech(model, text, voice):
|
29 |
print(model, text, voice)
|
30 |
if len(text) > 0:
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
34 |
speaker_embedding = torch.tensor(embeddings_dataset[voice]["xvector"]).unsqueeze(0)
|
35 |
|
36 |
-
speech =
|
37 |
audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
|
38 |
audio_data_16bit = (audio_data * 32767).astype(np.int16)
|
39 |
return speech["sampling_rate"], audio_data_16bit
|
|
|
2 |
import os
|
3 |
import random
|
4 |
import gradio as gr
|
5 |
+
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, pipeline
|
7 |
import base64
|
8 |
from datasets import load_dataset
|
9 |
from diffusers import DiffusionPipeline
|
|
|
29 |
def text2speech(model, text, voice):
|
30 |
print(model, text, voice)
|
31 |
if len(text) > 0:
|
32 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
33 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
34 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
35 |
+
inputs = processor(text=text, return_tensors="pt")
|
36 |
|
37 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
38 |
speaker_embedding = torch.tensor(embeddings_dataset[voice]["xvector"]).unsqueeze(0)
|
39 |
|
40 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
41 |
audio_data = np.frombuffer(speech["audio"], dtype=np.float32)
|
42 |
audio_data_16bit = (audio_data * 32767).astype(np.int16)
|
43 |
return speech["sampling_rate"], audio_data_16bit
|