Spaces:
Sleeping
Sleeping
import torch | |
import os | |
import random | |
import gradio as gr | |
from transformers import pipeline | |
import base64 | |
from datasets import load_dataset | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import login | |
import numpy as np | |
def guessanImage(model, image): | |
imgclassifier = pipeline("image-classification", model=model) | |
if image is not None: | |
description = imgclassifier(image) | |
return description | |
def guessanAge(model, image): | |
imgclassifier = pipeline("image-classification", model=model) | |
if image is not None: | |
description = imgclassifier(image) | |
return description | |
def text2speech(model, text): | |
if len(text) > 0: | |
speechclassifier = pipeline("text-to-speech", model=model) | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
output = speechclassifier(text, forward_params={"speaker_embeddings": speaker_embedding}) | |
console.log(output, type(output) ) | |
return output | |
radio1 = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier") | |
tab1 = gr.Interface( | |
fn=guessanImage, | |
inputs=[radio1, gr.Image(type="pil")], | |
outputs=["text"], | |
) | |
radio2 = gr.Radio(["nateraw/vit-age-classifier"], label="Select an Age Classifier", info="Age Classifier") | |
tab2 = gr.Interface( | |
fn=guessanAge, | |
inputs=[radio2, gr.Image(type="pil")], | |
outputs=["text"], | |
) | |
radio3 = gr.Radio(["microsoft/speecht5_tts"], label="Select an tts", info="Age Classifier") | |
tab3 = gr.Interface( | |
fn=text2speech, | |
inputs=[radio3, "text"], | |
outputs=[gr.Audio(label="Generated Speech", type="numpy")], | |
) | |
demo = gr.TabbedInterface([tab1, tab2, tab3], ["tab1", "tab2", "tab3"]) | |
demo.launch() | |