File size: 781 Bytes
cf49c4b
 
 
801ca00
cf49c4b
 
 
 
 
 
801ca00
e6212f1
 
18d5e82
97b336a
cf49c4b
 
5d7c9cd
cf49c4b
801ca00
d3dddd1
e6212f1
e02c7a0
cf49c4b
e6212f1
e02c7a0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import os
import random
import gradio as gr
from transformers import pipeline
import base64
from datasets import load_dataset
from diffusers import DiffusionPipeline
from huggingface_hub import login
import numpy as np

def guessanImage(image, model):
    #model = "microsoft/resnet-50"
    # st.write("using model:"+model)
    
    imgclassifier  = pipeline("image-classification", model=model)
    if image is not None:  
        description = imgclassifier(image)
    return description

radio = gr.Radio(["microsoft/resnet-50", "google/vit-base-patch16-224", "apple/mobilevit-small"], label="Select a Classifier", info="Image Classifier?")

demo = gr.Interface(
    fn=guessanImage,
    inputs=[gr.Image(type="pil"), radio],
    outputs=["text"],
)

demo.launch()