import gradio as gr from random import randint from all_models import models from externalmod import gr_Interface_load, randomize_seed import asyncio import os from threading import RLock # Create a lock to ensure thread safety when accessing shared resources lock = RLock() # Load Hugging Face token from environment variable, if available HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. # Function to load all models specified in the 'models' list def load_fn(models): global models_load models_load = {} # Iterate through all models to load them for model in models: if model not in models_load.keys(): try: print(f"Attempting to load model: {model}") m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) print(f"Successfully loaded model: {model}") except Exception as error: print(f"Error loading model {model}: {error}") m = gr.Interface(lambda: None, ['text'], ['image']) models_load.update({model: m}) print("Loading models...") load_fn(models) print("Models loaded successfully.") num_models = 6 # Set the default models to use for inference default_models = models[:num_models] inference_timeout = 600 MAX_SEED = 3999999999 starting_seed = randint(1941, 2024) print(f"Starting seed: {starting_seed}") # Extend the choices list to ensure it contains 'num_models' elements def extend_choices(choices): print(f"Extending choices: {choices}") extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] print(f"Extended choices: {extended}") return extended # Update the image boxes based on selected models def update_imgbox(choices): print(f"Updating image boxes with choices: {choices}") choices_plus = extend_choices(choices[:num_models]) imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] print(f"Updated image boxes: {imgboxes}") return imgboxes # Asynchronous function to perform inference on a given model async def infer(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium", timeout=inference_timeout): from pathlib import Path kwargs = {} noise = "" kwargs["seed"] = seed kwargs["batch_size"] = batch_size kwargs["priority"] = priority print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}, batch_size: {batch_size}, priority: {priority}") task = asyncio.create_task( asyncio.to_thread( models_load[model_str].fn, prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN ) ) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) print(f"Inference completed for model: {model_str}") except (Exception, asyncio.TimeoutError) as e: print(f"Error during inference for model {model_str}: {e}") if not task.done(): task.cancel() print(f"Task cancelled for model: {model_str}") result = None if task.done() and result is not None: with lock: png_path = f"image.{output_format.lower()}" result.save(png_path) image = str(Path(png_path).resolve()) print(f"Result saved as image: {image}") return image print(f"No result for model: {model_str}") return None # Function to generate an image based on the given model, prompt, and seed def gen_fnseed(model_str, prompt, seed=1, batch_size=1, output_format="PNG", priority="medium"): if model_str == 'NA': print(f"Model is 'NA', skipping generation.") return None try: print(f"Generating image for model: {model_str} with prompt: '{prompt}', seed: {seed}, batch_size: {batch_size}, priority: {priority}") loop = asyncio.new_event_loop() result = loop.run_until_complete( infer(model_str, prompt, seed, batch_size=batch_size, output_format=output_format, priority=priority) ) except (Exception, asyncio.CancelledError) as e: print(f"Error during generation for model {model_str}: {e}") result = None finally: loop.close() print(f"Event loop closed for model: {model_str}") return result # Create the Gradio Blocks interface with a custom theme print("Creating Gradio interface...") with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: gr.HTML("

Multi-models-prompt-to-image-generation

") with gr.Tab('Compare-6'): txt_input = gr.Textbox(label='Your prompt:', lines=4) gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total') with gr.Row(): seed = gr.Slider(label="Seed (max 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3) seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1) seed_rand.click(randomize_seed, None, [seed], queue=False) # Add batch size slider batch_size_slider = gr.Slider(label="Batch Size", minimum=1, maximum=10, step=1, value=1) output_format_dropdown = gr.Dropdown(["PNG", "JPEG"], label="Output Format", value="PNG") priority_dropdown = gr.Dropdown(["low", "medium", "high"], label="Model Priority", value="medium") with gr.Row(): output = [gr.Image(label=m, min_width=480) for m in default_models] current_models = [gr.Textbox(m, visible=False) for m in default_models] for m, o in zip(current_models, output): print(f"Setting up generation event for model: {m.value}") gen_event = gr.on( triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed, inputs=[m, txt_input, seed, batch_size_slider, output_format_dropdown, priority_dropdown], outputs=[o], concurrency_limit=None, queue=False ) with gr.Accordion('Model selection'): model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models!', value=default_models, interactive=True) model_choice.change(update_imgbox, model_choice, output) model_choice.change(extend_choices, model_choice, current_models) with gr.Row(): gr.HTML("

Additional UI elements can go here

") print("Setting up queue...") demo.queue(default_concurrency_limit=200, max_size=200) print("Launching Gradio interface...") demo.launch(show_api=False, max_threads=400) print("Gradio interface launched successfully.")