Abinivesh commited on
Commit
7e9b981
·
verified ·
1 Parent(s): 642a00b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -94
app.py CHANGED
@@ -1,132 +1,172 @@
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
 
4
  from externalmod import gr_Interface_load, randomize_seed
 
5
  import asyncio
6
  import os
7
  from threading import RLock
8
 
9
  # Create a lock to ensure thread safety when accessing shared resources
10
  lock = RLock()
 
 
11
 
12
- # Load Hugging Face token from environment variable
13
- HF_TOKEN = os.environ.get("HF_TOKEN", None)
14
-
15
- # Load models
16
- def load_models(models):
17
- global models_loaded
18
- models_loaded = {}
19
  for model in models:
20
- try:
21
- print(f"Loading model: {model}")
22
- m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
23
- print(f"Successfully loaded model: {model}")
24
- models_loaded[model] = m
25
- except Exception as e:
26
- print(f"Error loading model {model}: {e}")
27
- models_loaded[model] = None
28
-
 
 
 
 
 
 
29
  print("Loading models...")
30
- load_models(models)
31
- print("Models loaded.")
32
 
33
- # Global variables
34
  num_models = 6
 
 
 
35
  inference_timeout = 600
36
  MAX_SEED = 3999999999
 
37
  starting_seed = randint(1941, 2024)
 
38
 
39
- # Extend model choices to match the required number
40
  def extend_choices(choices):
41
- return choices[:num_models] + (['NA'] * (num_models - len(choices[:num_models])))
42
-
43
- # Function to perform inference asynchronously
44
- async def infer(model_name, prompt, seed, batch_size, priority, timeout):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  try:
46
- kwargs = {"seed": seed, "batch_size": batch_size, "priority": priority}
47
- print(f"Running inference for model: {model_name} with prompt: {prompt} and seed: {seed}")
48
-
49
- task = asyncio.create_task(
50
- asyncio.to_thread(
51
- models_loaded[model_name].fn,
52
- prompt=prompt,
53
- **kwargs,
54
- token=HF_TOKEN
55
- )
56
- )
57
  result = await asyncio.wait_for(task, timeout=timeout)
58
- return result
59
- except Exception as e:
60
- print(f"Inference failed for model {model_name}: {e}")
61
- return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # Generate images for each model
64
- def generate_image(model_name, prompt, seed, batch_size, output_format, priority):
65
- if model_name == 'NA' or models_loaded.get(model_name) is None:
66
- print(f"Skipping model: {model_name} (Not available or NA)")
67
  return None
68
-
69
  try:
 
 
70
  loop = asyncio.new_event_loop()
71
- asyncio.set_event_loop(loop)
72
- result = loop.run_until_complete(
73
- infer(model_name, prompt, seed, batch_size, priority, inference_timeout)
74
- )
75
- if result:
76
- output_path = f"output.{output_format.lower()}"
77
- result.save(output_path)
78
- print(f"Image saved: {output_path}")
79
- return output_path
80
- except Exception as e:
81
- print(f"Error generating image for model {model_name}: {e}")
82
  finally:
 
83
  loop.close()
 
 
84
 
85
- return None
86
-
87
- # Gradio Interface
88
  print("Creating Gradio interface...")
89
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
90
- gr.HTML("<center><h1>Multi-Model Prompt-to-Image Generator</h1></center>")
91
-
92
- # Input area
93
- with gr.Tab('Generate'):
94
- txt_input = gr.Textbox(label='Your Prompt', lines=4)
95
- gen_button = gr.Button('Generate Images')
96
-
97
  with gr.Row():
98
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed)
99
- seed_rand = gr.Button("Randomize Seed 🎲")
100
- batch_size = gr.Slider(label="Batch Size", minimum=1, maximum=10, step=1, value=1)
101
- output_format = gr.Dropdown(["PNG", "JPEG"], label="Output Format", value="PNG")
102
- priority = gr.Dropdown(["low", "medium", "high"], label="Priority", value="medium")
103
-
104
  seed_rand.click(randomize_seed, None, [seed], queue=False)
 
 
 
 
105
 
106
- # Outputs
107
  with gr.Row():
108
- output_images = [gr.Image(label=f"Model {i+1}") for i in range(num_models)]
109
-
110
- # Model selection
111
- with gr.Accordion("Model Selection", open=False):
112
- model_choice = gr.CheckboxGroup(models, label=f"Choose up to {num_models} models", value=models[:num_models])
113
-
114
- # Generation logic
115
- def generate_images(prompt, seed, batch_size, output_format, priority, selected_models):
116
- results = []
117
- selected_models = extend_choices(selected_models)
118
 
119
- for model in selected_models:
120
- result = generate_image(model, prompt, seed, batch_size, output_format, priority)
121
- results.append(result)
122
-
123
- return results
124
-
125
- gen_button.click(
126
- fn=generate_images,
127
- inputs=[txt_input, seed, batch_size, output_format, priority, model_choice],
128
- outputs=output_images
129
- )
 
 
 
 
 
 
 
 
130
 
 
 
 
131
  print("Launching Gradio interface...")
132
- demo.launch(show_api=False)
 
 
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
4
+
5
  from externalmod import gr_Interface_load, randomize_seed
6
+
7
  import asyncio
8
  import os
9
  from threading import RLock
10
 
11
  # Create a lock to ensure thread safety when accessing shared resources
12
  lock = RLock()
13
+ # Load Hugging Face token from environment variable, if available
14
+ HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
15
 
16
+ # Function to load all models specified in the 'models' list
17
+ def load_fn(models):
18
+ global models_load
19
+ models_load = {}
20
+
21
+ # Iterate through all models to load them
 
22
  for model in models:
23
+ if model not in models_load.keys():
24
+ try:
25
+ # Log model loading attempt
26
+ print(f"Attempting to load model: {model}")
27
+ # Load model interface using externalmod function
28
+ m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
29
+ print(f"Successfully loaded model: {model}")
30
+ except Exception as error:
31
+ # In case of an error, print it and create a placeholder interface
32
+ print(f"Error loading model {model}: {error}")
33
+ m = gr.Interface(lambda: None, ['text'], ['image'])
34
+ # Update the models_load dictionary with the loaded model
35
+ models_load.update({model: m})
36
+
37
+ # Load all models defined in the 'models' list
38
  print("Loading models...")
39
+ load_fn(models)
40
+ print("Models loaded successfully.")
41
 
 
42
  num_models = 6
43
+
44
+ # Set the default models to use for inference
45
+ default_models = models[:num_models]
46
  inference_timeout = 600
47
  MAX_SEED = 3999999999
48
+ # Generate a starting seed randomly between 1941 and 2024
49
  starting_seed = randint(1941, 2024)
50
+ print(f"Starting seed: {starting_seed}")
51
 
52
+ # Extend the choices list to ensure it contains 'num_models' elements
53
  def extend_choices(choices):
54
+ print(f"Extending choices: {choices}")
55
+ extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
56
+ print(f"Extended choices: {extended}")
57
+ return extended
58
+
59
+ # Update the image boxes based on selected models
60
+ def update_imgbox(choices):
61
+ print(f"Updating image boxes with choices: {choices}")
62
+ choices_plus = extend_choices(choices[:num_models])
63
+ imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
64
+ print(f"Updated image boxes: {imgboxes}")
65
+ return imgboxes
66
+
67
+ # Asynchronous function to perform inference on a given model
68
+ async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
69
+ from pathlib import Path
70
+ kwargs = {}
71
+ noise = ""
72
+ kwargs["seed"] = seed
73
+ # Create an asynchronous task to run the model inference
74
+ print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
75
+ task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
76
+ prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
77
+ await asyncio.sleep(0) # Allow other tasks to run
78
  try:
79
+ # Wait for the task to complete within the specified timeout
 
 
 
 
 
 
 
 
 
 
80
  result = await asyncio.wait_for(task, timeout=timeout)
81
+ print(f"Inference completed for model: {model_str}")
82
+ except (Exception, asyncio.TimeoutError) as e:
83
+ # Handle any exceptions or timeout errors
84
+ print(f"Error during inference for model {model_str}: {e}")
85
+ if not task.done():
86
+ task.cancel()
87
+ print(f"Task cancelled for model: {model_str}")
88
+ result = None
89
+ # If the task completed successfully, save the result as an image
90
+ if task.done() and result is not None:
91
+ with lock:
92
+ png_path = "image.png"
93
+ result.save(png_path)
94
+ image = str(Path(png_path).resolve())
95
+ print(f"Result saved as image: {image}")
96
+ return image
97
+ print(f"No result for model: {model_str}")
98
+ return None
99
 
100
+ # Function to generate an image based on the given model, prompt, and seed
101
+ def gen_fnseed(model_str, prompt, seed=1):
102
+ if model_str == 'NA':
103
+ print(f"Model is 'NA', skipping generation.")
104
  return None
 
105
  try:
106
+ # Create a new event loop to run the asynchronous inference function
107
+ print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
108
  loop = asyncio.new_event_loop()
109
+ result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
110
+ except (Exception, asyncio.CancelledError) as e:
111
+ # Handle any exceptions or cancelled tasks
112
+ print(f"Error during generation for model {model_str}: {e}")
113
+ result = None
 
 
 
 
 
 
114
  finally:
115
+ # Close the event loop
116
  loop.close()
117
+ print(f"Event loop closed for model: {model_str}")
118
+ return result
119
 
120
+ # Create the Gradio Blocks interface with a custom theme
 
 
121
  print("Creating Gradio interface...")
122
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
123
+ gr.HTML("<center><h1>Compare-6</h1></center>")
124
+ with gr.Tab('Compare-6'):
125
+ # Text input for user prompt
126
+ txt_input = gr.Textbox(label='Your prompt:', lines=4)
127
+ # Button to generate images
128
+ gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
 
129
  with gr.Row():
130
+ # Slider to select a seed for reproducibility
131
+ seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
132
+ # Button to randomize the seed
133
+ seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
134
+ # Set up click event to randomize the seed
 
135
  seed_rand.click(randomize_seed, None, [seed], queue=False)
136
+ print("Seed randomization button set up.")
137
+ # Button click to start generation
138
+ gen_button.click(lambda s: gr.update(interactive=True), None)
139
+ print("Generation button set up.")
140
 
 
141
  with gr.Row():
142
+ # Create image output components for each model
143
+ output = [gr.Image(label=m, min_width=480) for m in default_models]
144
+ # Create hidden textboxes to store the current models
145
+ current_models = [gr.Textbox(m, visible=False) for m in default_models]
 
 
 
 
 
 
146
 
147
+ # Set up generation events for each model and output image
148
+ for m, o in zip(current_models, output):
149
+ print(f"Setting up generation event for model: {m.value}")
150
+ gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
151
+ inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
152
+ # The commented stop button could be used to cancel the generation event
153
+ #stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
154
+ # Accordion to allow model selection
155
+ with gr.Accordion('Model selection'):
156
+ # Checkbox group to select up to 'num_models' different models
157
+ model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
158
+ # Update image boxes and current models based on model selection
159
+ model_choice.change(update_imgbox, model_choice, output)
160
+ model_choice.change(extend_choices, model_choice, current_models)
161
+ print("Model selection setup complete.")
162
+ with gr.Row():
163
+ # Placeholder HTML to add additional UI elements if needed
164
+ gr.HTML(
165
+ )
166
 
167
+ # Queue settings for handling multiple concurrent requests
168
+ print("Setting up queue...")
169
+ demo.queue(default_concurrency_limit=200, max_size=200)
170
  print("Launching Gradio interface...")
171
+ demo.launch(show_api=False, max_threads=400)
172
+ print("Gradio interface launched successfully.")