Abinivesh commited on
Commit
76e7d38
·
verified ·
1 Parent(s): ad27e75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -119
app.py CHANGED
@@ -1,172 +1,100 @@
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
4
-
5
  from externalmod import gr_Interface_load, randomize_seed
6
-
7
  import asyncio
8
  import os
9
  from threading import RLock
 
10
 
11
- # Create a lock to ensure thread safety when accessing shared resources
12
  lock = RLock()
13
- # Load Hugging Face token from environment variable, if available
14
- HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
15
 
16
- # Function to load all models specified in the 'models' list
 
 
 
17
  def load_fn(models):
18
  global models_load
19
  models_load = {}
20
-
21
- # Iterate through all models to load them
22
  for model in models:
23
- if model not in models_load.keys():
24
  try:
25
- # Log model loading attempt
26
- print(f"Attempting to load model: {model}")
27
- # Load model interface using externalmod function
28
  m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
29
- print(f"Successfully loaded model: {model}")
30
- except Exception as error:
31
- # In case of an error, print it and create a placeholder interface
32
- print(f"Error loading model {model}: {error}")
33
- m = gr.Interface(lambda: None, ['text'], ['image'])
34
- # Update the models_load dictionary with the loaded model
35
- models_load.update({model: m})
36
 
37
- # Load all models defined in the 'models' list
38
  print("Loading models...")
39
  load_fn(models)
40
  print("Models loaded successfully.")
41
 
42
  num_models = 6
43
-
44
- # Set the default models to use for inference
45
- default_models = models[:num_models]
46
- inference_timeout = 600
47
- MAX_SEED = 3999999999
48
- # Generate a starting seed randomly between 1941 and 2024
49
  starting_seed = randint(1941, 2024)
50
- print(f"Starting seed: {starting_seed}")
 
51
 
52
- # Extend the choices list to ensure it contains 'num_models' elements
53
  def extend_choices(choices):
54
- print(f"Extending choices: {choices}")
55
- extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
56
- print(f"Extended choices: {extended}")
57
- return extended
58
 
59
- # Update the image boxes based on selected models
60
  def update_imgbox(choices):
61
- print(f"Updating image boxes with choices: {choices}")
62
- choices_plus = extend_choices(choices[:num_models])
63
- imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
64
- print(f"Updated image boxes: {imgboxes}")
65
- return imgboxes
66
 
67
- # Asynchronous function to perform inference on a given model
68
  async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
69
- from pathlib import Path
70
- kwargs = {}
71
- noise = ""
72
- kwargs["seed"] = seed
73
- # Create an asynchronous task to run the model inference
74
- print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
75
- task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
76
- prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
77
- await asyncio.sleep(0) # Allow other tasks to run
78
  try:
79
- # Wait for the task to complete within the specified timeout
80
- result = await asyncio.wait_for(task, timeout=timeout)
81
- print(f"Inference completed for model: {model_str}")
82
- except (Exception, asyncio.TimeoutError) as e:
83
- # Handle any exceptions or timeout errors
84
- print(f"Error during inference for model {model_str}: {e}")
85
- if not task.done():
86
- task.cancel()
87
- print(f"Task cancelled for model: {model_str}")
88
- result = None
89
- # If the task completed successfully, save the result as an image
90
- if task.done() and result is not None:
91
- with lock:
92
- png_path = "image.png"
93
- result.save(png_path)
94
- image = str(Path(png_path).resolve())
95
- print(f"Result saved as image: {image}")
96
- return image
97
- print(f"No result for model: {model_str}")
98
  return None
99
 
100
- # Function to generate an image based on the given model, prompt, and seed
101
  def gen_fnseed(model_str, prompt, seed=1):
102
  if model_str == 'NA':
103
- print(f"Model is 'NA', skipping generation.")
104
  return None
105
  try:
106
- # Create a new event loop to run the asynchronous inference function
107
- print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}")
108
  loop = asyncio.new_event_loop()
 
109
  result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
110
- except (Exception, asyncio.CancelledError) as e:
111
- # Handle any exceptions or cancelled tasks
112
- print(f"Error during generation for model {model_str}: {e}")
113
  result = None
114
  finally:
115
- # Close the event loop
116
  loop.close()
117
- print(f"Event loop closed for model: {model_str}")
118
  return result
119
 
120
- # Create the Gradio Blocks interface with a custom theme
121
  print("Creating Gradio interface...")
122
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
123
  gr.HTML("<center><h1>Compare-6</h1></center>")
124
  with gr.Tab('Compare-6'):
125
- # Text input for user prompt
126
  txt_input = gr.Textbox(label='Your prompt:', lines=4)
127
- # Button to generate images
128
- gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
129
- with gr.Row():
130
- # Slider to select a seed for reproducibility
131
- seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
132
- # Button to randomize the seed
133
- seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
134
- # Set up click event to randomize the seed
135
  seed_rand.click(randomize_seed, None, [seed], queue=False)
136
- print("Seed randomization button set up.")
137
- # Button click to start generation
138
- gen_button.click(lambda s: gr.update(interactive=True), None)
139
- print("Generation button set up.")
140
-
141
- with gr.Row():
142
- # Create image output components for each model
143
- output = [gr.Image(label=m, min_width=480) for m in default_models]
144
- # Create hidden textboxes to store the current models
145
- current_models = [gr.Textbox(m, visible=False) for m in default_models]
146
-
147
- # Set up generation events for each model and output image
148
- for m, o in zip(current_models, output):
149
- print(f"Setting up generation event for model: {m.value}")
150
- gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
151
- inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
152
- # The commented stop button could be used to cancel the generation event
153
- #stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
154
- # Accordion to allow model selection
155
  with gr.Accordion('Model selection'):
156
- # Checkbox group to select up to 'num_models' different models
157
- model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
158
- # Update image boxes and current models based on model selection
159
  model_choice.change(update_imgbox, model_choice, output)
160
  model_choice.change(extend_choices, model_choice, current_models)
161
- print("Model selection setup complete.")
162
- with gr.Row():
163
- # Placeholder HTML to add additional UI elements if needed
164
- gr.HTML(
165
- )
166
 
167
- # Queue settings for handling multiple concurrent requests
168
- print("Setting up queue...")
169
- demo.queue(default_concurrency_limit=200, max_size=200)
170
- print("Launching Gradio interface...")
171
- demo.launch(show_api=False, max_threads=400)
172
- print("Gradio interface launched successfully.")
 
1
  import gradio as gr
2
  from random import randint
3
  from all_models import models
 
4
  from externalmod import gr_Interface_load, randomize_seed
 
5
  import asyncio
6
  import os
7
  from threading import RLock
8
+ from pathlib import Path
9
 
10
+ # Create a lock for thread safety
11
  lock = RLock()
 
 
12
 
13
+ # Load Hugging Face token from environment variable (if available)
14
+ HF_TOKEN = os.getenv("HF_TOKEN")
15
+
16
+ # Function to load models
17
  def load_fn(models):
18
  global models_load
19
  models_load = {}
 
 
20
  for model in models:
21
+ if model not in models_load:
22
  try:
23
+ print(f"Loading model: {model}")
 
 
24
  m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
25
+ models_load[model] = m
26
+ except Exception as e:
27
+ print(f"Error loading model {model}: {e}")
28
+ models_load[model] = gr.Interface(lambda: None, ['text'], ['image'])
 
 
 
29
 
 
30
  print("Loading models...")
31
  load_fn(models)
32
  print("Models loaded successfully.")
33
 
34
  num_models = 6
 
 
 
 
 
 
35
  starting_seed = randint(1941, 2024)
36
+ MAX_SEED = 3999999999
37
+ inference_timeout = 600
38
 
 
39
  def extend_choices(choices):
40
+ return choices[:num_models] + ['NA'] * (num_models - len(choices))
 
 
 
41
 
 
42
  def update_imgbox(choices):
43
+ choices_extended = extend_choices(choices)
44
+ return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended]
 
 
 
45
 
 
46
  async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
47
+ if model_str not in models_load:
48
+ return None
49
+
50
+ kwargs = {"seed": seed}
 
 
 
 
 
51
  try:
52
+ print(f"Running inference for model: {model_str} with prompt: '{prompt}'")
53
+ result = await asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN)
54
+ if result:
55
+ with lock:
56
+ png_path = "image.png"
57
+ result.save(png_path)
58
+ return str(Path(png_path).resolve())
59
+ except Exception as e:
60
+ print(f"Error during inference for {model_str}: {e}")
 
 
 
 
 
 
 
 
 
 
61
  return None
62
 
 
63
  def gen_fnseed(model_str, prompt, seed=1):
64
  if model_str == 'NA':
 
65
  return None
66
  try:
 
 
67
  loop = asyncio.new_event_loop()
68
+ asyncio.set_event_loop(loop)
69
  result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
70
+ except Exception as e:
71
+ print(f"Error generating image for {model_str}: {e}")
 
72
  result = None
73
  finally:
 
74
  loop.close()
 
75
  return result
76
 
 
77
  print("Creating Gradio interface...")
78
  with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
79
  gr.HTML("<center><h1>Compare-6</h1></center>")
80
  with gr.Tab('Compare-6'):
 
81
  txt_input = gr.Textbox(label='Your prompt:', lines=4)
82
+ gen_button = gr.Button('Generate up to 6 images')
83
+ seed = gr.Slider("Seed (0 to MAX)", minimum=0, maximum=MAX_SEED, value=starting_seed)
84
+ seed_rand = gr.Button("Randomize Seed 🎲")
85
+
 
 
 
 
86
  seed_rand.click(randomize_seed, None, [seed], queue=False)
87
+
88
+ output = [gr.Image(label=m) for m in models[:num_models]]
89
+ current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]]
90
+
91
+ for m, o in zip(current_models, output):
92
+ gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o], queue=False)
93
+
 
 
 
 
 
 
 
 
 
 
 
 
94
  with gr.Accordion('Model selection'):
95
+ model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models')
 
 
96
  model_choice.change(update_imgbox, model_choice, output)
97
  model_choice.change(extend_choices, model_choice, current_models)
 
 
 
 
 
98
 
99
+ demo.queue(default_concurrency_limit=50, max_size=100)
100
+ demo.launch(show_api=False)