Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
|
14 |
def load_fn(models):
|
15 |
global models_load
|
16 |
models_load = {}
|
17 |
-
|
18 |
for model in models:
|
19 |
if model not in models_load:
|
20 |
try:
|
@@ -23,7 +23,7 @@ def load_fn(models):
|
|
23 |
print(f"Loaded model: {model}")
|
24 |
except Exception as error:
|
25 |
print(f"Error loading model {model}: {error}")
|
26 |
-
m = gr.Interface
|
27 |
models_load[model] = m
|
28 |
|
29 |
print("Loading models...")
|
@@ -45,49 +45,54 @@ def update_imgbox(choices):
|
|
45 |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
46 |
|
47 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
|
|
|
|
|
|
|
|
48 |
kwargs = {"seed": seed}
|
49 |
print(f"Starting inference: {model_str} | Prompt: '{prompt}' | Seed: {seed}")
|
50 |
-
|
51 |
try:
|
52 |
-
result = await asyncio.wait_for(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
except Exception as e:
|
54 |
print(f"Error during inference: {e}")
|
55 |
-
|
56 |
-
task.cancel()
|
57 |
-
return None
|
58 |
-
if task.done() and result:
|
59 |
-
with lock:
|
60 |
-
result.save("image.png")
|
61 |
-
return "image.png"
|
62 |
return None
|
63 |
|
64 |
def gen_fnseed(model_str, prompt, seed=1):
|
65 |
if model_str == 'NA':
|
66 |
return None
|
67 |
-
|
68 |
-
result = loop.run_until_complete(infer(model_str, prompt, seed))
|
69 |
-
loop.close()
|
70 |
-
return result
|
71 |
|
72 |
print("Creating Gradio interface...")
|
73 |
with gr.Blocks(theme="gradio/soft") as demo:
|
74 |
gr.HTML("<center><h1>TEXT-IMAGE-USING-MULTIMODELS</h1></center>")
|
|
|
75 |
with gr.Tab():
|
76 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
77 |
gen_button = gr.Button('Generate')
|
78 |
seed = gr.Slider("Seed", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed)
|
79 |
seed_rand = gr.Button("Randomize Seed 🎲")
|
80 |
seed_rand.click(randomize_seed, None, [seed])
|
|
|
81 |
output = [gr.Image(label=m) for m in default_models]
|
82 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
83 |
-
|
84 |
for m, o in zip(current_models, output):
|
85 |
gen_button.click(gen_fnseed, [m, txt_input, seed], o)
|
86 |
-
|
87 |
with gr.Accordion('Model selection'):
|
88 |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models)
|
89 |
model_choice.change(update_imgbox, model_choice, output)
|
90 |
model_choice.change(extend_choices, model_choice, current_models)
|
91 |
|
92 |
-
demo.queue(default_concurrency_limit=
|
93 |
demo.launch(show_api=False, max_threads=400)
|
|
|
14 |
def load_fn(models):
|
15 |
global models_load
|
16 |
models_load = {}
|
17 |
+
|
18 |
for model in models:
|
19 |
if model not in models_load:
|
20 |
try:
|
|
|
23 |
print(f"Loaded model: {model}")
|
24 |
except Exception as error:
|
25 |
print(f"Error loading model {model}: {error}")
|
26 |
+
m = None # Avoid using gr.Interface here
|
27 |
models_load[model] = m
|
28 |
|
29 |
print("Loading models...")
|
|
|
45 |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
46 |
|
47 |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
|
48 |
+
if model_str not in models_load or models_load[model_str] is None:
|
49 |
+
print(f"Model {model_str} is not available.")
|
50 |
+
return None
|
51 |
+
|
52 |
kwargs = {"seed": seed}
|
53 |
print(f"Starting inference: {model_str} | Prompt: '{prompt}' | Seed: {seed}")
|
54 |
+
|
55 |
try:
|
56 |
+
result = await asyncio.wait_for(
|
57 |
+
asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs),
|
58 |
+
timeout=timeout
|
59 |
+
)
|
60 |
+
if result:
|
61 |
+
save_path = "image.png"
|
62 |
+
with lock:
|
63 |
+
result.save(save_path)
|
64 |
+
return save_path
|
65 |
except Exception as e:
|
66 |
print(f"Error during inference: {e}")
|
67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return None
|
69 |
|
70 |
def gen_fnseed(model_str, prompt, seed=1):
|
71 |
if model_str == 'NA':
|
72 |
return None
|
73 |
+
return asyncio.run(infer(model_str, prompt, seed))
|
|
|
|
|
|
|
74 |
|
75 |
print("Creating Gradio interface...")
|
76 |
with gr.Blocks(theme="gradio/soft") as demo:
|
77 |
gr.HTML("<center><h1>TEXT-IMAGE-USING-MULTIMODELS</h1></center>")
|
78 |
+
|
79 |
with gr.Tab():
|
80 |
txt_input = gr.Textbox(label='Your prompt:', lines=4)
|
81 |
gen_button = gr.Button('Generate')
|
82 |
seed = gr.Slider("Seed", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed)
|
83 |
seed_rand = gr.Button("Randomize Seed 🎲")
|
84 |
seed_rand.click(randomize_seed, None, [seed])
|
85 |
+
|
86 |
output = [gr.Image(label=m) for m in default_models]
|
87 |
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
88 |
+
|
89 |
for m, o in zip(current_models, output):
|
90 |
gen_button.click(gen_fnseed, [m, txt_input, seed], o)
|
91 |
+
|
92 |
with gr.Accordion('Model selection'):
|
93 |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models)
|
94 |
model_choice.change(update_imgbox, model_choice, output)
|
95 |
model_choice.change(extend_choices, model_choice, current_models)
|
96 |
|
97 |
+
demo.queue(default_concurrency_limit=500, max_size=500)
|
98 |
demo.launch(show_api=False, max_threads=400)
|