Abinivesh's picture
Update app.py
f36ee15 verified
raw
history blame
3.35 kB
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load:
try:
print(f"Loading model: {model}")
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
print(f"Loaded model: {model}")
except Exception as error:
print(f"Error loading model {model}: {error}")
m = None # Avoid using gr.Interface here
models_load[model] = m
print("Loading models...")
load_fn(models)
print("Models loaded successfully.")
num_models = 6
default_models = models[:num_models]
inference_timeout = 600
MAX_SEED = 3999999999
starting_seed = randint(1941, 2024)
print(f"Starting seed: {starting_seed}")
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices)) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices)
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
if model_str not in models_load or models_load[model_str] is None:
print(f"Model {model_str} is not available.")
return None
kwargs = {"seed": seed}
print(f"Starting inference: {model_str} | Prompt: '{prompt}' | Seed: {seed}")
try:
result = await asyncio.wait_for(
asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs),
timeout=timeout
)
if result:
save_path = "image.png"
with lock:
result.save(save_path)
return save_path
except Exception as e:
print(f"Error during inference: {e}")
return None
def gen_fnseed(model_str, prompt, seed=1):
if model_str == 'NA':
return None
return asyncio.run(infer(model_str, prompt, seed))
print("Creating Gradio interface...")
with gr.Blocks(theme="gradio/soft") as demo:
gr.HTML("<center><h1>TEXT-IMAGE-USING-MULTIMODELS</h1></center>")
with gr.Tab():
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate')
seed = gr.Slider("Seed", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed)
seed_rand = gr.Button("Randomize Seed 🎲")
seed_rand.click(randomize_seed, None, [seed])
output = [gr.Image(label=m) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_button.click(gen_fnseed, [m, txt_input, seed], o)
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
demo.queue(default_concurrency_limit=500, max_size=500)
demo.launch(show_api=False, max_threads=400)