Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import asyncio | |
import os | |
from random import randint | |
from threading import RLock | |
from pathlib import Path | |
from all_models import models | |
from externalmod import gr_Interface_load, randomize_seed | |
# Create a lock for thread safety | |
lock = RLock() | |
# Load Hugging Face token from environment variable | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Function to load models with optimized settings | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load: | |
try: | |
print(f"Loading model: {model}") | |
m = gr_Interface_load( | |
f'models/{model}', | |
hf_token=HF_TOKEN, | |
torch_dtype=torch.float16 # Reduce memory usage | |
) | |
m.enable_model_cpu_offload() # Offload to CPU when not in use | |
models_load[model] = m | |
except Exception as e: | |
print(f"Error loading model {model}: {e}") | |
models_load[model] = None | |
print("Loading models...") | |
load_fn(models) | |
print("Models loaded successfully.") | |
# Constants | |
num_models = 1 | |
starting_seed = randint(1941, 2024) | |
MAX_SEED = 3999999999 | |
inference_timeout = 600 | |
# Update UI components | |
def extend_choices(choices): | |
return choices[:num_models] + ['NA'] * (num_models - len(choices)) | |
def update_imgbox(choices): | |
choices_extended = extend_choices(choices) | |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended] | |
# Async inference function | |
async def infer(model_str, prompt, seed=1): | |
if model_str not in models_load or models_load[model_str] is None: | |
print(f"Model {model_str} is unavailable.") | |
return None | |
kwargs = {"seed": seed} | |
try: | |
print(f"Running inference for model: {model_str} with prompt: '{prompt}'") | |
result = await asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN) | |
if result: | |
with lock: | |
png_path = "image.png" | |
result.save(png_path) | |
return str(Path(png_path).resolve()) | |
except torch.cuda.OutOfMemoryError: | |
print(f"CUDA memory error for {model_str}. Try reducing image size.") | |
except Exception as e: | |
print(f"Error during inference for {model_str}: {e}") | |
return None | |
# Synchronous wrapper | |
def gen_fnseed(model_str, prompt, seed=1): | |
if model_str == 'NA': | |
return None | |
try: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
result = loop.run_until_complete(infer(model_str, prompt, seed)) | |
except Exception as e: | |
print(f"Error generating image for {model_str}: {e}") | |
result = None | |
finally: | |
loop.close() | |
return result | |
# Gradio UI | |
print("Creating Gradio interface...") | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<center><h1>Compare-6</h1></center>") | |
with gr.Tab('Compare-6'): | |
txt_input = gr.Textbox(label='Your prompt:', lines=4) | |
gen_button = gr.Button('Generate up to 6 images') | |
seed = gr.Slider(label="Seed (0 to MAX)", minimum=0, maximum=MAX_SEED, value=starting_seed) | |
seed_rand = gr.Button("Randomize Seed 🎲") | |
seed_rand.click(randomize_seed, None, [seed], queue=False) | |
output = [gr.Image(label=m) for m in models[:num_models]] | |
current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]] | |
for m, o in zip(current_models, output): | |
gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o], queue=False) | |
with gr.Accordion('Model selection'): | |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models') | |
model_choice.change(update_imgbox, model_choice, output) | |
model_choice.change(extend_choices, model_choice, current_models) | |
demo.queue(default_concurrency_limit=20, max_size=50) # Adjusted for better stability | |
demo.launch(show_api=False) | |