Spaces:
Runtime error
Runtime error
import gradio as gr | |
from random import randint | |
from all_models import models | |
from externalmod import gr_Interface_load, randomize_seed | |
import asyncio | |
import os | |
from threading import RLock | |
# Create a lock to ensure thread safety when accessing shared resources | |
lock = RLock() | |
# Load Hugging Face token from environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Function to load models | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load: | |
try: | |
print(f"Attempting to load model: {model}") | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
print(f"Successfully loaded model: {model}") | |
except Exception as error: | |
print(f"Error loading model {model}: {error}") | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
models_load[model] = m | |
# Load the models | |
print("Loading models...") | |
load_fn(models) | |
print("Models loaded successfully.") | |
num_models = 6 | |
default_models = models[:num_models] | |
inference_timeout = 600 | |
MAX_SEED = 3999999999 | |
starting_seed = randint(1941, 2024) | |
print(f"Starting seed: {starting_seed}") | |
def extend_choices(choices): | |
return choices[:num_models] + ['NA'] * (num_models - len(choices)) | |
# Asynchronous function for inference | |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout): | |
if model_str == 'NA': | |
return None | |
print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}") | |
try: | |
result = await asyncio.to_thread(models_load[model_str].fn, prompt, seed=seed, token=HF_TOKEN) | |
if result: | |
return result | |
except (Exception, asyncio.TimeoutError) as e: | |
print(f"Error during inference for model {model_str}: {e}") | |
return None | |
def gen_fnseed(model_str, prompt, seed=1): | |
if model_str == 'NA': | |
return None | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
try: | |
result = loop.run_until_complete(infer(model_str, prompt, seed)) | |
except Exception as e: | |
print(f"Error during generation for model {model_str}: {e}") | |
result = None | |
finally: | |
loop.close() | |
return result | |
# Creating the Gradio UI | |
print("Creating Gradio interface...") | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<center><h1>Compare-6</h1></center>") | |
with gr.Tab('Compare-6'): | |
txt_input = gr.Textbox(label='Your prompt:', lines=4) | |
gen_button = gr.Button('Generate up to 6 images') | |
with gr.Row(): | |
seed = gr.Slider("Seed", 0, MAX_SEED, step=1, value=starting_seed) | |
seed_rand = gr.Button("Randomize Seed 🎲") | |
seed_rand.click(randomize_seed, None, [seed]) | |
with gr.Row(): | |
output = [gr.Image(label=m, min_width=480) for m in default_models] | |
current_models = [gr.Textbox(m, visible=False) for m in default_models] | |
for m, o in zip(current_models, output): | |
gen_button.click(fn=gen_fnseed, inputs=[m, txt_input, seed], outputs=[o]) | |
with gr.Accordion('Model selection'): | |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models) | |
model_choice.change(lambda c: extend_choices(c), model_choice, current_models) | |
print("Launching Gradio interface...") | |
demo.queue(default_concurrency_limit=50, max_size=100) | |
demo.launch(share=True, max_threads=50) | |