Spaces:
Runtime error
Runtime error
import gradio as gr | |
from random import randint | |
from all_models import models | |
from externalmod import gr_Interface_load, randomize_seed | |
import asyncio | |
import os | |
from threading import RLock | |
# Create a lock for thread safety | |
lock = RLock() | |
# Load Hugging Face token from environment variables | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Function to load models | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load: | |
try: | |
print(f"Loading model: {model}") | |
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
print(f"Successfully loaded: {model}") | |
except Exception as error: | |
print(f"Error loading {model}: {error}") | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
models_load[model] = m | |
# Load models | |
print("Loading models...") | |
load_fn(models) | |
print("Models loaded successfully.") | |
num_models = min(3, len(models)) # Reduce to 3 models to prevent GPU overloading | |
starting_seed = randint(1941, 2024) | |
print(f"Starting seed: {starting_seed}") | |
# Extend choices to match num_models | |
def extend_choices(choices): | |
extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] | |
return extended | |
# Update image boxes based on selected models | |
def update_imgbox(choices): | |
choices_extended = extend_choices(choices) | |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_extended] | |
# Asynchronous inference function | |
async def infer(model_str, prompt, seed=1, timeout=600): | |
if model_str == 'NA': | |
return None | |
try: | |
print(f"Running inference on {model_str} with prompt: '{prompt}'") | |
task = asyncio.to_thread(models_load[model_str].fn, prompt=prompt, seed=seed, token=HF_TOKEN) | |
result = await asyncio.wait_for(task, timeout=timeout) | |
if result: | |
with lock: | |
image_path = "image.png" | |
result.save(image_path) | |
return image_path | |
except Exception as e: | |
print(f"Error in inference for {model_str}: {e}") | |
return None | |
# Wrapper function for inference | |
def gen_fnseed(model_str, prompt, seed=1): | |
if model_str == 'NA': | |
return None | |
return asyncio.run(infer(model_str, prompt, seed)) | |
# Create Gradio interface | |
print("Creating Gradio interface...") | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML("<center><h1>Compare-3</h1></center>") | |
with gr.Tab('Compare-3'): | |
txt_input = gr.Textbox(label='Your prompt:', lines=4) | |
gen_button = gr.Button('Generate images') | |
seed = gr.Slider(label="Seed (max 3999999999)", minimum=0, maximum=3999999999, step=1, value=starting_seed) | |
seed_rand = gr.Button("Randomize Seed 🎲") | |
seed_rand.click(randomize_seed, None, [seed]) | |
output = [gr.Image(label=m) for m in models[:num_models]] | |
current_models = [gr.Textbox(m, visible=False) for m in models[:num_models]] | |
for m, o in zip(current_models, output): | |
gen_button.click(gen_fnseed, inputs=[m, txt_input, seed], outputs=[o]) | |
with gr.Accordion('Model selection'): | |
model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=models[:num_models]) | |
model_choice.change(update_imgbox, model_choice, output) | |
model_choice.change(extend_choices, model_choice, current_models) | |
# Reduce concurrency to avoid T4 overload | |
demo.queue(default_concurrency_limit=50, max_size=100) | |
print("Launching Gradio interface...") | |
demo.launch(show_api=False, max_threads=50, debug=True) | |