Spaces:
Runtime error
Runtime error
File size: 6,859 Bytes
aac338f d560905 aac338f bbc9212 a698a47 bbc9212 aac338f bbc9212 aac338f bbc9212 aac338f b48f587 aac338f fac3758 a4896cb fac3758 d560905 fac3758 aac338f b48f587 aac338f bbc9212 aac338f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from random import randint
from all_models import models
from externalmod import gr_Interface_load, randomize_seed
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
def load_fn(models):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
load_fn(models)
num_models = 6
default_models = models[:num_models]
inference_timeout = 600
MAX_SEED=3999999999
starting_seed = randint(1941, 2024)
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
from pathlib import Path
kwargs = {}
noise = ""
kwargs["seed"] = seed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
await asyncio.sleep(0)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except (Exception, asyncio.TimeoutError) as e:
print(e)
print(f"Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
if task.done() and result is not None:
with lock:
png_path = "image.png"
result.save(png_path)
image = str(Path(png_path).resolve())
return image
return None
def gen_fnseed(model_str, prompt, seed=1):
if model_str == 'NA':
return None
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"Task aborted: {model_str}")
result = None
finally:
loop.close()
return result
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.HTML("<h1>Compare 6</h1>")
with gr.Tab('Compare-6'):
txt_input = gr.Textbox(label='Your prompt:', lines=4)
gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total')
with gr.Row():
seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1)
seed_rand.click(randomize_seed, None, [seed], queue=False)
#stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
gen_button.click(lambda s: gr.update(interactive = True), None)
with gr.Tab("Advanced Settings"):
with gr.Row():
# Textbox for specifying elements to exclude from the image
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
# Slider for selecting the image width
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
# Slider for selecting the image height
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
with gr.Row():
# Slider for setting the number of sampling steps
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
with gr.Row():
# Slider for adjusting the CFG scale (guidance scale)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
with gr.Row():
# Slider for adjusting the transformation strength
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
with gr.Row():
# Slider for setting the seed for reproducibility
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
# Radio buttons for selecting the sampling method
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<div>
<body>
<div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images and select models.</p>
</div>
</body>
</div>
</div>
"""
)
with gr.Row():
output = [gr.Image(label = m, min_width=480) for m in default_models]
current_models = [gr.Textbox(m, visible = False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed,
inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False)
#stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
#model_choice = gr.CheckboxGroup(models, label = f'Choose up to {num_models} different models from the 2 available! Untick them to only use one!', value = default_models, multiselect = True, max_choices = num_models, interactive = True, filterable = False)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
with gr.Row():
gr.HTML(
)
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400) |