Commit
·
24b6129
1
Parent(s):
f6d4f89
went back. too many issues
Browse files- app.py +55 -287
- requirements.txt +2 -3
app.py
CHANGED
@@ -2,307 +2,75 @@ import os
|
|
2 |
import re
|
3 |
import streamlit as st
|
4 |
from dotenv import load_dotenv
|
|
|
5 |
|
6 |
-
import io
|
7 |
-
import time
|
8 |
-
import json
|
9 |
-
import queue
|
10 |
-
import logging
|
11 |
-
from PIL import Image
|
12 |
-
from typing import Optional
|
13 |
-
|
14 |
-
# ------------------------
|
15 |
-
# LangSmith imports
|
16 |
-
# ------------------------
|
17 |
-
import openai
|
18 |
-
from langsmith.wrappers import wrap_openai
|
19 |
-
from langsmith import traceable
|
20 |
-
|
21 |
-
# ------------------------
|
22 |
-
# Configure logging
|
23 |
-
# ------------------------
|
24 |
-
def init_logging():
|
25 |
-
logging.basicConfig(
|
26 |
-
format="[%(asctime)s] %(levelname)s: %(message)s",
|
27 |
-
level=logging.INFO,
|
28 |
-
handlers=[
|
29 |
-
logging.StreamHandler()
|
30 |
-
]
|
31 |
-
)
|
32 |
-
return logging.getLogger()
|
33 |
-
|
34 |
-
logger = init_logging()
|
35 |
-
|
36 |
-
# ------------------------
|
37 |
# Load environment variables
|
38 |
-
# ------------------------
|
39 |
load_dotenv()
|
40 |
api_key = os.getenv("OPENAI_API_KEY")
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
openai_client = openai.Client(api_key=api_key)
|
52 |
-
client = wrap_openai(openai_client)
|
53 |
|
54 |
-
#
|
55 |
-
# Streamlit session state initialization
|
56 |
-
# ------------------------
|
57 |
if "messages" not in st.session_state:
|
58 |
st.session_state["messages"] = []
|
59 |
-
|
60 |
if "thread_id" not in st.session_state:
|
61 |
st.session_state["thread_id"] = None
|
62 |
|
63 |
-
|
64 |
-
st.session_state["tool_requests"] = queue.Queue()
|
65 |
|
66 |
-
|
67 |
-
st.session_state["current_run"] = None
|
68 |
-
|
69 |
-
tool_requests = st.session_state["tool_requests"]
|
70 |
-
|
71 |
-
# ------------------------
|
72 |
-
# Utility to remove citations like:
|
73 |
-
# ------------------------
|
74 |
-
def remove_citation(text: str) -> str:
|
75 |
-
pattern = r"【\d+†\w+】"
|
76 |
-
return re.sub(pattern, "📚", text)
|
77 |
-
|
78 |
-
# ------------------------
|
79 |
-
# Function to handle tool requests (function calls)
|
80 |
-
# ------------------------
|
81 |
-
def handle_tool_request(event):
|
82 |
"""
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
st.toast("Processing a function call...", icon=":hammer_and_wrench:")
|
87 |
-
tool_outputs = []
|
88 |
-
data = event.data
|
89 |
-
|
90 |
-
for tool_call in data.required_action.submit_tool_outputs.tool_calls:
|
91 |
-
function_name = tool_call.function.name
|
92 |
-
arguments = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
93 |
-
|
94 |
-
logger.info(f"Executing function '{function_name}' with arguments {arguments}")
|
95 |
-
|
96 |
-
try:
|
97 |
-
# Map function names to actual implementations
|
98 |
-
if function_name == "hello_world":
|
99 |
-
output = hello_world(**arguments)
|
100 |
-
elif function_name == "another_function":
|
101 |
-
output = another_function(**arguments)
|
102 |
-
else:
|
103 |
-
raise ValueError(f"Unrecognized function name: {function_name}")
|
104 |
-
|
105 |
-
tool_outputs.append({"tool_call_id": tool_call.id, "output": output})
|
106 |
-
logger.info(f"Function '{function_name}' executed successfully.")
|
107 |
-
|
108 |
-
except Exception as e:
|
109 |
-
logger.error(f"Error executing function '{function_name}': {e}")
|
110 |
-
error_response = {"status": "error", "message": str(e)}
|
111 |
-
tool_outputs.append({"tool_call_id": tool_call.id, "output": json.dumps(error_response)})
|
112 |
-
|
113 |
-
st.toast("Function call completed.", icon=":white_check_mark:")
|
114 |
-
return tool_outputs, data.thread_id, data.id
|
115 |
-
|
116 |
-
# ------------------------
|
117 |
-
# Example function implementations
|
118 |
-
# ------------------------
|
119 |
-
def hello_world(name: str = "World") -> str:
|
120 |
-
"""
|
121 |
-
Example function that returns a greeting.
|
122 |
-
"""
|
123 |
-
time.sleep(2) # Simulate a delay for a long-running task
|
124 |
-
return f"Hello, {name}! This message is from a function call."
|
125 |
-
|
126 |
-
def another_function(param1: str, param2: int) -> str:
|
127 |
-
"""
|
128 |
-
Another example function.
|
129 |
-
"""
|
130 |
-
time.sleep(1)
|
131 |
-
return f"Received param1: {param1} and param2: {param2}."
|
132 |
-
|
133 |
-
# ------------------------
|
134 |
-
# Streamlit UI Components
|
135 |
-
# ------------------------
|
136 |
-
def display_message(role: str, content: str):
|
137 |
-
"""
|
138 |
-
Displays a message in the Streamlit chat interface.
|
139 |
-
"""
|
140 |
-
with st.chat_message(role):
|
141 |
-
if role == "assistant" and isinstance(content, Image.Image):
|
142 |
-
st.image(content)
|
143 |
-
else:
|
144 |
-
st.write(content)
|
145 |
-
|
146 |
-
# ------------------------
|
147 |
-
# Helper: data streamer for text & images
|
148 |
-
# ------------------------
|
149 |
-
def data_streamer():
|
150 |
"""
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
logger.info("Starting data streamer.")
|
155 |
-
st.toast("Thinking...", icon=":hourglass_flowing_sand:")
|
156 |
-
content_produced = False
|
157 |
-
accumulated_content = ""
|
158 |
-
|
159 |
-
try:
|
160 |
-
for event in st.session_state["current_run"]:
|
161 |
-
match event.event:
|
162 |
-
case "thread.message.delta":
|
163 |
-
content = event.data.delta.content[0]
|
164 |
-
match content.type:
|
165 |
-
case "text":
|
166 |
-
text_value = content.text.value
|
167 |
-
accumulated_content += text_value
|
168 |
-
content_produced = True
|
169 |
-
yield remove_citation(text_value)
|
170 |
-
|
171 |
-
case "image_file":
|
172 |
-
file_id = content.image_file.file_id
|
173 |
-
logger.info(f"Received image file ID: {file_id}")
|
174 |
-
image_content = io.BytesIO(client.files.content(file_id).read())
|
175 |
-
image = Image.open(image_content)
|
176 |
-
yield image
|
177 |
-
|
178 |
-
case "thread.run.requires_action":
|
179 |
-
logger.info(f"Run requires action: {event}")
|
180 |
-
tool_requests.put(event)
|
181 |
-
if not content_produced:
|
182 |
-
yield "[LLM is requesting a function call...]"
|
183 |
-
return
|
184 |
-
|
185 |
-
case "thread.run.failed":
|
186 |
-
logger.error(f"Run failed: {event}")
|
187 |
-
st.error("The assistant encountered an error and couldn't complete the request.")
|
188 |
-
return
|
189 |
-
|
190 |
-
except Exception as e:
|
191 |
-
logger.exception(f"Exception in data_streamer: {e}")
|
192 |
-
st.error(f"An unexpected error occurred: {e}")
|
193 |
-
|
194 |
-
finally:
|
195 |
-
st.toast("Completed", icon=":checkered_flag:")
|
196 |
-
|
197 |
-
# ------------------------
|
198 |
-
# Helper: display the streaming content
|
199 |
-
# ------------------------
|
200 |
-
def display_stream(run_stream, create_context=True):
|
201 |
-
"""
|
202 |
-
Grabs tokens from data_streamer() and displays them in real-time.
|
203 |
-
If `create_context=True`, messages are displayed as an assistant block.
|
204 |
-
"""
|
205 |
-
logger.info("Displaying stream.")
|
206 |
-
st.session_state["current_run"] = run_stream
|
207 |
-
|
208 |
-
if create_context:
|
209 |
-
with st.chat_message("assistant"):
|
210 |
-
for content in data_streamer():
|
211 |
-
display_message("assistant", content)
|
212 |
-
else:
|
213 |
-
for content in data_streamer():
|
214 |
-
display_message("assistant", content)
|
215 |
-
|
216 |
-
# After streaming, accumulate the final content
|
217 |
-
# This assumes that the entire content has been yielded
|
218 |
-
# You might want to enhance this to handle partial content or interruptions
|
219 |
-
# Here, we simply capture accumulated content if it's text
|
220 |
-
# For images, it's already displayed
|
221 |
-
if accumulated_text := remove_citation(accumulated_content.strip()):
|
222 |
-
st.session_state["messages"].append({"role": "assistant", "content": accumulated_text})
|
223 |
-
|
224 |
-
# ------------------------
|
225 |
-
# Main chat logic with traceability
|
226 |
-
# ------------------------
|
227 |
-
@traceable # Enable LangSmith traceability
|
228 |
-
def generate_assistant_reply(user_input: str):
|
229 |
-
"""
|
230 |
-
Handles user input by creating or continuing a thread,
|
231 |
-
sending the message to the assistant, and streaming the response.
|
232 |
-
"""
|
233 |
-
logger.info(f"User input received: {user_input}")
|
234 |
-
|
235 |
-
# Create or retrieve thread
|
236 |
-
if not st.session_state["thread_id"]:
|
237 |
-
logger.info("Creating a new thread.")
|
238 |
-
thread = client.beta.threads.create()
|
239 |
-
st.session_state["thread_id"] = thread.id
|
240 |
else:
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
# Add user message to the thread
|
245 |
-
try:
|
246 |
-
client.beta.threads.messages.create(
|
247 |
-
thread_id=thread.id,
|
248 |
-
role="user",
|
249 |
-
content=user_input
|
250 |
)
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
# ------------------------
|
286 |
-
# Streamlit UI
|
287 |
-
# ------------------------
|
288 |
-
def main():
|
289 |
-
st.set_page_config(page_title="Solution Specifier A", layout="centered")
|
290 |
-
st.title("Solution Specifier A")
|
291 |
-
|
292 |
-
# Display existing conversation
|
293 |
-
for msg in st.session_state["messages"]:
|
294 |
-
display_message(msg["role"], msg["content"])
|
295 |
-
|
296 |
-
user_input = st.chat_input("Type your message here...")
|
297 |
-
if user_input:
|
298 |
-
# Display user's message
|
299 |
-
display_message("user", user_input)
|
300 |
-
|
301 |
-
# Add user message to session state
|
302 |
-
st.session_state["messages"].append({"role": "user", "content": user_input})
|
303 |
-
|
304 |
-
# Generate assistant reply
|
305 |
-
generate_assistant_reply(user_input)
|
306 |
-
|
307 |
-
if __name__ == "__main__":
|
308 |
-
main()
|
|
|
2 |
import re
|
3 |
import streamlit as st
|
4 |
from dotenv import load_dotenv
|
5 |
+
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Load environment variables
|
|
|
8 |
load_dotenv()
|
9 |
api_key = os.getenv("OPENAI_API_KEY")
|
10 |
+
extractor_agent = os.getenv("ASSISTANT_ID_SOLUTION_SPECIFIER_A")
|
11 |
|
12 |
+
# Create the assistant
|
13 |
+
extractor_llm = OpenAIAssistantRunnable(
|
14 |
+
assistant_id=extractor_agent,
|
15 |
+
api_key=api_key,
|
16 |
+
as_agent=True
|
17 |
+
)
|
18 |
|
19 |
+
def remove_citation(text: str) -> str:
|
20 |
+
pattern = r"【\d+†\w+】"
|
21 |
+
return re.sub(pattern, "📚", text)
|
|
|
|
|
22 |
|
23 |
+
# Initialize session state for messages and thread_id
|
|
|
|
|
24 |
if "messages" not in st.session_state:
|
25 |
st.session_state["messages"] = []
|
|
|
26 |
if "thread_id" not in st.session_state:
|
27 |
st.session_state["thread_id"] = None
|
28 |
|
29 |
+
st.title("Solution Specifier A")
|
|
|
30 |
|
31 |
+
def predict(user_input: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
"""
|
33 |
+
This function calls our OpenAIAssistantRunnable to get a response.
|
34 |
+
If we don't have a thread_id yet, we create a new thread on the first call.
|
35 |
+
Otherwise, we continue the existing thread.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"""
|
37 |
+
if st.session_state["thread_id"] is None:
|
38 |
+
response = extractor_llm.invoke({"content": user_input})
|
39 |
+
st.session_state["thread_id"] = response.thread_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
else:
|
41 |
+
response = extractor_llm.invoke(
|
42 |
+
{"content": user_input, "thread_id": st.session_state["thread_id"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
+
output = response.return_values["output"]
|
45 |
+
return remove_citation(output)
|
46 |
+
|
47 |
+
# Display any existing messages (from a previous run or refresh)
|
48 |
+
for msg in st.session_state["messages"]:
|
49 |
+
if msg["role"] == "user":
|
50 |
+
with st.chat_message("user"):
|
51 |
+
st.write(msg["content"])
|
52 |
+
else:
|
53 |
+
with st.chat_message("assistant"):
|
54 |
+
st.write(msg["content"])
|
55 |
+
|
56 |
+
# Create the chat input widget at the bottom of the page
|
57 |
+
user_input = st.chat_input("Type your message here...")
|
58 |
+
|
59 |
+
# When the user hits ENTER on st.chat_input
|
60 |
+
if user_input:
|
61 |
+
# Add the user message to session state
|
62 |
+
st.session_state["messages"].append({"role": "user", "content": user_input})
|
63 |
+
|
64 |
+
# Display the user's message
|
65 |
+
with st.chat_message("user"):
|
66 |
+
st.write(user_input)
|
67 |
+
|
68 |
+
# Get the assistant's response
|
69 |
+
response_text = predict(user_input)
|
70 |
+
|
71 |
+
# Add the assistant response to session state
|
72 |
+
st.session_state["messages"].append({"role": "assistant", "content": response_text})
|
73 |
+
|
74 |
+
# Display the assistant's reply
|
75 |
+
with st.chat_message("assistant"):
|
76 |
+
st.write(response_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
python-dotenv
|
2 |
-
|
3 |
-
openai
|
4 |
-
Pillow
|
|
|
1 |
python-dotenv
|
2 |
+
langchain
|
3 |
+
langchain-openai
|
|