AbenzaFran's picture
Update app.py
1de6e3a verified
raw
history blame
10.5 kB
import os
import io
import json
import time
import queue
import logging
import streamlit as st
from dotenv import load_dotenv
from PIL import Image
from streamlit import session_state as ss
# Optional: for direct Assistants API usage:
# from openai import OpenAI
# But we'll also show a LangChain approach:
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
from langchain_core.agents import AgentFinish # If you want to handle final states, etc.
#############################################
# 1) ENV & BASIC LOGGING
#############################################
load_dotenv()
logging.basicConfig(format="[%(asctime)s] %(levelname)+8s: %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID") # or your existing "ASSISTANT_ID_SOLUTION_SPECIFIER_A"
#############################################
# 2) CREATE YOUR ASSISTANT RUNNABLE
#############################################
if not OPENAI_API_KEY or not ASSISTANT_ID:
raise ValueError("Missing OPENAI_API_KEY or ASSISTANT_ID in environment.")
assistant_runnable = OpenAIAssistantRunnable(
assistant_id=ASSISTANT_ID,
api_key=OPENAI_API_KEY,
as_agent=True
)
# We’ll store a queue for function calls (tools) we want to handle:
if "tool_requests" not in ss:
ss["tool_requests"] = queue.Queue()
#############################################
# 3) OPTIONAL: EXAMPLE CUSTOM FUNCTION (TOOL)
#############################################
def hello_world(name: str) -> str:
"""Example function to show how to handle 'requires_action' or function calls."""
time.sleep(3)
return f"Hello, {name}! This greeting took 3s."
#############################################
# 4) STREAMING HANDLER
#############################################
def data_streamer(stream_events):
"""
Generator that processes streaming events from the Assistants API.
Yields either text, images, or triggers a function call queue item.
"""
st.toast("Thinking...", icon="🤔")
content_produced = False
# We'll mimic the logic in that Medium article:
for response in stream_events:
event_type = response.event
if event_type == "thread.message.delta":
# The model is streaming partial text or possibly an image
content = response.data.delta.content[0] # Typically a list of 1 item
content_type = content.type
if content_type == "text":
text_value = content.text.value
content_produced = True
yield text_value # yield text tokens
elif content_type == "image_file":
# The Assistant can output images
file_id = content.image_file.file_id
# You can retrieve the file from the OpenAI Assistants API, e.g.
# image_bytes = client.files.content(file_id).read()
# but with LangChain's current approach, we don't have that convenience method exposed.
# We'll skip a real API call for brevity:
st.warning("Image streaming not fully implemented in this snippet.")
# yield an "Image" object if you have it
# yield Image.open(...)
elif event_type == "thread.run.requires_action":
# The Assistant wants to call a function
logger.info("Run requires action (function call) – queueing it.")
ss["tool_requests"].put(response)
# If no text was produced yet, yield a placeholder
if not content_produced:
yield "[Assistant is requesting a function call]"
# Return so we can handle the function call
return
elif event_type == "thread.run.failed":
st.error("Run has failed.")
return
st.toast("Done.", icon="✅")
def display_stream(stream_iterator, new_chat_context=True):
"""
Wraps the `data_streamer` generator and writes to Streamlit in real-time.
If `new_chat_context=True`, we put the response in a dedicated assistant chat bubble.
"""
if new_chat_context:
with st.chat_message("assistant"):
response = st.write_stream(data_streamer(stream_iterator))
else:
# If we are continuing inside the same bubble (like after a function call),
# we skip creating a new chat bubble.
response = st.write_stream(data_streamer(stream_iterator))
return response
#############################################
# 5) ACTUAL APP
#############################################
def main():
st.set_page_config(page_title="Streamlit + Assistants Demo", layout="centered")
st.title("Enhanced Assistant Demo")
# Initialize messages
if "messages" not in ss:
ss.messages = []
# Display previous messages
for msg in ss.messages:
with st.chat_message(msg["role"]):
st.write(msg["content"])
# -- (A) FILE UPLOAD DEMO --
# If you want the user to upload a CSV and pass it to the assistant, do so here.
uploaded_file = st.file_uploader("Upload a CSV for the assistant to analyze (optional)", type=["csv"])
if uploaded_file:
st.write("We won't fully implement code interpreter logic here, but you could pass it in as a tool resource.")
# For example, you might store it in the code interpreter or do a vector search, etc.
# -- (B) Chat Input --
user_input = st.chat_input("Ask me anything or request a function call...")
if user_input:
# Show user's message
with st.chat_message("user"):
st.write(user_input)
ss.messages.append({"role": "user", "content": user_input})
# (C) Actually run the assistant in "streaming mode"
# For a brand-new conversation, omit thread_id. Otherwise, pass an existing one.
# We'll store one globally in session_state for continuity.
if "thread_id" not in ss:
ss["thread_id"] = None
# If we have no thread_id yet, this is a fresh conversation
if ss["thread_id"] is None:
resp = assistant_runnable.invoke({"content": user_input})
ss["thread_id"] = resp.thread_id
# For a single-turn request (non-streaming):
# resp_text = resp.return_values["output"]
# st.write(resp_text)
# But let's do streaming. The tricky part: langchain’s `invoke` returns
# the final message rather than a streaming generator. So, to do streaming,
# we can call the underlying Assistants API directly. Or we can do a special
# approach that merges the new article's logic.
# For demonstration, let's store the final message in a new chat bubble:
final_text = resp.return_values["output"]
with st.chat_message("assistant"):
st.write(final_text)
ss.messages.append({"role": "assistant", "content": final_text})
else:
# We have an existing thread. Let's continue the conversation with streaming
# We'll do that using the new openai client approach or via the
# same approach as the Medium article. But that means we need direct access
# to the thread, which we can do by "cheating" with the raw python SDK or by
# implementing a custom loop with the AgentExecutor.
#
# For demonstration, let's do something *conceptual*:
from openai import OpenAI
openai_client = OpenAI(api_key=OPENAI_API_KEY)
# We'll do a 'threads.runs.stream' call:
with openai_client.beta.threads.runs.stream(
thread_id=ss["thread_id"],
assistant_id=ASSISTANT_ID,
) as stream:
# We have to add the user's message to the thread first:
openai_client.beta.threads.messages.create(
thread_id=ss["thread_id"],
role="user",
content=user_input
)
# Now the assistant responds in the stream:
display_stream(stream, new_chat_context=True)
# If there's a function call required:
while not ss["tool_requests"].empty():
with st.chat_message("assistant"):
tool_request = ss["tool_requests"].get()
tool_outputs, thread_id, run_id = handle_requires_action(tool_request)
with openai_client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=thread_id,
run_id=run_id,
tool_outputs=tool_outputs
) as tool_stream:
display_stream(tool_stream, new_chat_context=False)
st.write("---")
st.info("This is a demo of combining streaming, function calls, and file upload.")
def handle_requires_action(tool_request):
"""
This function is triggered when the assistant tries to call a function mid-run.
We parse the arguments, call the function, and return the outputs so the run can continue.
"""
st.toast("Assistant is requesting a function call...", icon="🔧")
data = tool_request.data
tool_outputs = []
# The list of tools the assistant wants to call
if not hasattr(data.required_action.submit_tool_outputs, "tool_calls"):
st.error("No tool calls found in the request.")
return [], data.thread_id, data.id
for tc in data.required_action.submit_tool_outputs.tool_calls:
func_name = tc.function.name
func_args = json.loads(tc.function.arguments or "{}")
if func_name == "hello_world":
name_str = func_args.get("name", "Anonymous")
result = hello_world(name_str)
# Return the output to the assistant
tool_outputs.append({
"tool_call_id": tc.id,
"output": result
})
else:
# Unrecognized function
error_msg = f"Function '{func_name}' not recognized."
tool_outputs.append({
"tool_call_id": tc.id,
"output": json.dumps({"error": error_msg})
})
return tool_outputs, data.thread_id, data.id
if __name__ == "__main__":
main()