Spaces:
Sleeping
Sleeping
File size: 8,661 Bytes
73d49e1 b8736af 73d49e1 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 73d49e1 b02dba2 73d49e1 b02dba2 b8736af b02dba2 713dd57 73d49e1 713dd57 73d49e1 b02dba2 b8736af b02dba2 b8736af b02dba2 1de6e3a b02dba2 b8736af b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 713dd57 b02dba2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import re
import streamlit as st
from dotenv import load_dotenv
import io
import time
import json
import queue
import logging
from PIL import Image
# ------------------------
# LangSmith imports
# ------------------------
import openai
from langsmith.wrappers import wrap_openai
from langsmith import traceable
# ------------------------
# Configure logging (optional but recommended)
# ------------------------
def init_logging():
logging.basicConfig(
format="[%(asctime)s] %(levelname)+8s: %(message)s",
level=logging.INFO,
)
return logging.getLogger()
logger = init_logging()
# ------------------------
# Load environment variables
# ------------------------
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
assistant_id = os.getenv("ASSISTANT_ID_SOLUTION_SPECIFIER_A") # The assistant we want to call
if not api_key or not assistant_id:
raise RuntimeError("Please set OPENAI_API_KEY and ASSISTANT_ID_SOLUTION_SPECIFIER_A in your environment")
# ------------------------
# Wrap the OpenAI client for LangSmith traceability
# ------------------------
openai_client = openai.Client(api_key=api_key)
client = wrap_openai(openai_client)
# ------------------------
# Streamlit session state
# ------------------------
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "thread" not in st.session_state:
st.session_state["thread"] = None
if "tool_requests" not in st.session_state:
st.session_state["tool_requests"] = queue.Queue()
tool_requests = st.session_state["tool_requests"]
# ------------------------
# Utility to remove citations like: 【12†somefile】
# You can adapt to your own "annotations" handling if needed
# ------------------------
def remove_citation(text: str) -> str:
pattern = r"【\d+†\w+】"
return re.sub(pattern, "📚", text)
# ------------------------
# Helper: data streamer for text & images
# Adapted from the Medium article approach
# to handle text deltas, images, or function calls
# ------------------------
def data_streamer():
"""
Streams data from the assistant run. Yields text or images
and enqueues tool requests (function calls) to tool_requests.
"""
st.toast("Thinking...", icon=":material/emoji_objects:")
content_produced = False
for event in st.session_state["run_stream"]:
match event.event:
case "thread.message.delta":
# A chunk of text or an image
content = event.data.delta.content[0]
match content.type:
case "text":
text_value = content.text.value
content_produced = True
# Optionally remove citations, etc.
yield remove_citation(text_value)
case "image_file":
# If the assistant returns an image
file_id = content.image_file.file_id
content_produced = True
image_content = io.BytesIO(client.files.content(file_id).read())
yield Image.open(image_content)
case "thread.run.requires_action":
# The assistant is requesting a function call
logger.info(f"[Tool Request] {event}")
tool_requests.put(event)
if not content_produced:
# We can yield a placeholder if the model hasn't said anything yet
yield "[LLM is requesting a function call]"
return
case "thread.run.failed":
# The run failed for some reason
logger.error(f"Run failed: {event}")
return
# If we successfully streamed everything
st.toast("Completed", icon=":material/emoji_objects:")
# ------------------------
# Helper: display the streaming content
# This wraps data_streamer in st.write_stream
# so you can see partial tokens in real-time
# ------------------------
def display_stream(run_stream, create_context=True):
"""
Grabs tokens from data_streamer() and displays them in real-time.
If `create_context=True`, messages are displayed as an assistant block.
"""
st.session_state["run_stream"] = run_stream
if create_context:
with st.chat_message("assistant"):
streamed_result = st.write_stream(data_streamer)
else:
streamed_result = st.write_stream(data_streamer)
# Return whatever the final token stream is
return streamed_result
# ------------------------
# Example of handling a function call (requires_action)
# If your Assistant uses function calling (e.g. code interpreter),
# you'd parse arguments, run the function, and return output here.
# ------------------------
def handle_tool_request(event):
"""
Demonstrates how you might handle a function call.
In practice, you'd parse the arguments from the event
and run your custom logic. Then return outputs as JSON.
"""
st.toast("Running a function (this is user-defined code)", icon=":material/function:")
tool_outputs = []
data = event.data
for tool_call in data.required_action.submit_tool_outputs.tool_calls:
if tool_call.function.arguments:
function_args = json.loads(tool_call.function.arguments)
else:
function_args = {}
match tool_call.function.name:
case "hello_world":
# Example: implement a user-defined function
name = function_args.get("name", "anonymous")
time.sleep(2) # Simulate a long-running function
output_val = f"Hello, {name}! This was from a local function."
tool_outputs.append({"tool_call_id": tool_call.id, "output": output_val})
case _:
# If unknown function name
msg = {"status": "error", "message": "Unknown function request."}
tool_outputs.append({"tool_call_id": tool_call.id, "output": json.dumps(msg)})
return tool_outputs, data.thread_id, data.id
# ------------------------
# Main chat logic
# ------------------------
@traceable # Make this function traceable via LangSmith
def generate_assistant_reply(user_input: str):
"""
1. If no thread exists, create a new one.
2. Insert user message into the thread.
3. Use the Assistants API to create a run + stream the response.
4. If the assistant requests a function call, handle it and stream again.
"""
# Create or retrieve thread
if not st.session_state["thread"]:
st.session_state["thread"] = client.beta.threads.create()
thread = st.session_state["thread"]
# Add user message to the thread
client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=user_input
)
# Start streaming assistant response
with client.beta.threads.runs.stream(
thread_id=thread.id,
assistant_id=assistant_id,
) as run_stream:
display_stream(run_stream)
# If the assistant requested any tool calls, handle them now
while not tool_requests.empty():
event = tool_requests.get()
tool_outputs, t_id, run_id = handle_tool_request(event)
# Submit tool outputs
with client.beta.threads.runs.submit_tool_outputs_stream(
thread_id=t_id, run_id=run_id, tool_outputs=tool_outputs
) as next_stream:
display_stream(next_stream, create_context=False)
# ------------------------
# Streamlit UI
# ------------------------
def main():
st.set_page_config(page_title="Solution Specifier A", layout="centered")
st.title("Solution Specifier A")
# Display existing conversation
for msg in st.session_state["messages"]:
with st.chat_message(msg["role"]):
st.write(msg["content"])
user_input = st.chat_input("Type your message here...")
if user_input:
# Show user's message
with st.chat_message("user"):
st.write(user_input)
# Keep in session state
st.session_state["messages"].append({"role": "user", "content": user_input})
# Generate assistant reply
generate_assistant_reply(user_input)
# In a real app, you might keep track of the final text
# from the streamed tokens. For simplicity, we store
# the entire streamed result as one block in session state:
st.session_state["messages"].append(
{"role": "assistant", "content": "[assistant reply streamed above]"}
)
if __name__ == "__main__":
main() |