Spaces:
Runtime error
Runtime error
File size: 6,986 Bytes
8a58cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
"""Common classes/functions for tree index operations."""
import asyncio
import logging
from typing import Dict, List, Sequence, Tuple
from gpt_index.async_utils import run_async_tasks
from gpt_index.data_structs.data_structs import IndexGraph, Node
from gpt_index.indices.node_utils import get_text_splits_from_document
from gpt_index.indices.prompt_helper import PromptHelper
from gpt_index.indices.utils import get_sorted_node_list
from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor
from gpt_index.langchain_helpers.text_splitter import TextSplitter
from gpt_index.prompts.prompts import SummaryPrompt
from gpt_index.schema import BaseDocument
class GPTTreeIndexBuilder:
"""GPT tree index builder.
Helper class to build the tree-structured index,
or to synthesize an answer.
"""
def __init__(
self,
num_children: int,
summary_prompt: SummaryPrompt,
llm_predictor: LLMPredictor,
prompt_helper: PromptHelper,
text_splitter: TextSplitter,
use_async: bool = False,
) -> None:
"""Initialize with params."""
if num_children < 2:
raise ValueError("Invalid number of children.")
self.num_children = num_children
self.summary_prompt = summary_prompt
self._llm_predictor = llm_predictor
self._prompt_helper = prompt_helper
self._text_splitter = text_splitter
self._use_async = use_async
def _get_nodes_from_document(
self, start_idx: int, document: BaseDocument
) -> Dict[int, Node]:
"""Add document to index."""
# NOTE: summary prompt does not need to be partially formatted
text_splits = get_text_splits_from_document(
document=document, text_splitter=self._text_splitter
)
text_chunks = [text_split.text_chunk for text_split in text_splits]
doc_nodes = {
(start_idx + i): Node(
text=t,
index=(start_idx + i),
ref_doc_id=document.get_doc_id(),
embedding=document.embedding,
extra_info=document.extra_info,
)
for i, t in enumerate(text_chunks)
}
return doc_nodes
def build_from_text(
self,
documents: Sequence[BaseDocument],
build_tree: bool = True,
) -> IndexGraph:
"""Build from text.
Returns:
IndexGraph: graph object consisting of all_nodes, root_nodes
"""
all_nodes: Dict[int, Node] = {}
for d in documents:
all_nodes.update(self._get_nodes_from_document(len(all_nodes), d))
if build_tree:
# instantiate all_nodes from initial text chunks
root_nodes = self.build_index_from_nodes(all_nodes, all_nodes)
else:
# if build_tree is False, then don't surface any root nodes
root_nodes = {}
return IndexGraph(all_nodes=all_nodes, root_nodes=root_nodes)
def _prepare_node_and_text_chunks(
self, cur_nodes: Dict[int, Node]
) -> Tuple[List[int], List[List[Node]], List[str]]:
"""Prepare node and text chunks."""
cur_node_list = get_sorted_node_list(cur_nodes)
logging.info(
f"> Building index from nodes: {len(cur_nodes) // self.num_children} chunks"
)
indices, cur_nodes_chunks, text_chunks = [], [], []
for i in range(0, len(cur_node_list), self.num_children):
cur_nodes_chunk = cur_node_list[i : i + self.num_children]
text_chunk = self._prompt_helper.get_text_from_nodes(
cur_nodes_chunk, prompt=self.summary_prompt
)
indices.append(i)
cur_nodes_chunks.append(cur_nodes_chunk)
text_chunks.append(text_chunk)
return indices, cur_nodes_chunks, text_chunks
def _construct_parent_nodes(
self,
cur_index: int,
indices: List[int],
cur_nodes_chunks: List[List[Node]],
summaries: List[str],
) -> Dict[int, Node]:
"""Construct parent nodes."""
new_node_dict = {}
for i, cur_nodes_chunk, new_summary in zip(
indices, cur_nodes_chunks, summaries
):
logging.debug(
f"> {i}/{len(cur_nodes_chunk)}, "
"summary: {truncate_text(new_summary, 50)}"
)
new_node = Node(
text=new_summary,
index=cur_index,
child_indices={n.index for n in cur_nodes_chunk},
)
new_node_dict[cur_index] = new_node
cur_index += 1
return new_node_dict
def build_index_from_nodes(
self,
cur_nodes: Dict[int, Node],
all_nodes: Dict[int, Node],
) -> Dict[int, Node]:
"""Consolidates chunks recursively, in a bottoms-up fashion."""
cur_index = len(all_nodes)
indices, cur_nodes_chunks, text_chunks = self._prepare_node_and_text_chunks(
cur_nodes
)
if self._use_async:
tasks = [
self._llm_predictor.apredict(
self.summary_prompt, context_str=text_chunk
)
for text_chunk in text_chunks
]
outputs: List[Tuple[str, str]] = run_async_tasks(tasks)
summaries = [output[0] for output in outputs]
else:
summaries = [
self._llm_predictor.predict(
self.summary_prompt, context_str=text_chunk
)[0]
for text_chunk in text_chunks
]
new_node_dict = self._construct_parent_nodes(
cur_index, indices, cur_nodes_chunks, summaries
)
all_nodes.update(new_node_dict)
if len(new_node_dict) <= self.num_children:
return new_node_dict
else:
return self.build_index_from_nodes(new_node_dict, all_nodes)
async def abuild_index_from_nodes(
self,
cur_nodes: Dict[int, Node],
all_nodes: Dict[int, Node],
) -> Dict[int, Node]:
"""Consolidates chunks recursively, in a bottoms-up fashion."""
cur_index = len(all_nodes)
indices, cur_nodes_chunks, text_chunks = self._prepare_node_and_text_chunks(
cur_nodes
)
tasks = [
self._llm_predictor.apredict(self.summary_prompt, context_str=text_chunk)
for text_chunk in text_chunks
]
outputs: List[Tuple[str, str]] = await asyncio.gather(*tasks)
summaries = [output[0] for output in outputs]
new_node_dict = self._construct_parent_nodes(
cur_index, indices, cur_nodes_chunks, summaries
)
all_nodes.update(new_node_dict)
if len(new_node_dict) <= self.num_children:
return new_node_dict
else:
return self.build_index_from_nodes(new_node_dict, all_nodes)
|