Llama3ByNvidia / app.py
AbdulMoid's picture
Update app.py
b1f106d verified
raw
history blame
918 Bytes
import gradio as gr
from transformers import pipeline
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
# Load the model
model_name = "nvidia/Llama3-ChatQA-1.5-8B"
qa_pipeline = pipeline("text-generation", model=model_name)
# FastAPI app
app = FastAPI()
class Query(BaseModel):
inputs: str
@app.post("/predict")
async def predict(query: Query):
response = qa_pipeline(query.inputs, max_length=250)
return {"generated_text": response[0]["generated_text"]}
# Gradio app
def generate_answer(question):
response = qa_pipeline(question, max_length=250)
return response[0]["generated_text"]
iface = gr.Interface(fn=generate_answer, inputs="text", outputs="text", title="Llama3 ChatQA")
# Mount Gradio app to FastAPI
@app.get("/")
async def gradio_app():
return gr.mount_gradio_app(app, iface)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)