coded the streamlit app
Browse files
app.py
CHANGED
@@ -1,4 +1,37 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
1 |
+
"""app.py"""
|
2 |
+
|
3 |
import streamlit as st
|
4 |
+
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
|
5 |
+
|
6 |
+
# Load pre-trained GPT-2 model and tokenizer
|
7 |
+
model_name = "gpt2"
|
8 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Define function to generate blog post
|
12 |
+
def generate_blogpost(topic):
|
13 |
+
input_text = f"Blog post about {topic}:"
|
14 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
+
|
16 |
+
# Generate text
|
17 |
+
output = model.generate(input_ids, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2)
|
18 |
+
|
19 |
+
# Decode and return text
|
20 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
21 |
+
return generated_text
|
22 |
+
|
23 |
+
# Streamlit app
|
24 |
+
def main():
|
25 |
+
st.title("Blog Post Generator")
|
26 |
+
|
27 |
+
# Sidebar input for topic
|
28 |
+
topic = st.sidebar.text_input("Enter topic for the blog post", "a crazy person driving a car")
|
29 |
+
|
30 |
+
# Generate button
|
31 |
+
if st.sidebar.button("Generate Blog Post"):
|
32 |
+
blogpost = generate_blogpost(topic)
|
33 |
+
st.subheader(f"Generated Blog Post on {topic}:")
|
34 |
+
st.write(blogpost)
|
35 |
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|