Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,47 @@ from transformers import T5ForConditionalGeneration, RobertaTokenizer
|
|
5 |
quantized_model = T5ForConditionalGeneration.from_pretrained("AbdulHadi806/codet5-finetuned-latest-quantized")
|
6 |
tokenizer = RobertaTokenizer.from_pretrained("AbdulHadi806/codet5-finetuned-latest-quantized")
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Create Gradio interface
|
14 |
-
iface = gr.Interface(fn=
|
15 |
|
16 |
# Launch the interface
|
17 |
iface.launch()
|
|
|
5 |
quantized_model = T5ForConditionalGeneration.from_pretrained("AbdulHadi806/codet5-finetuned-latest-quantized")
|
6 |
tokenizer = RobertaTokenizer.from_pretrained("AbdulHadi806/codet5-finetuned-latest-quantized")
|
7 |
|
8 |
+
def generate_code(input_text):
|
9 |
+
print(input_text)
|
10 |
+
input_ids = tokenizer(input_text, return_tensors='pt', padding="max_length", truncation=True, max_length=128).input_ids.to(model.device)
|
11 |
+
outputs = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True)
|
12 |
+
predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
+
cleaned_code = clean_generated_code(postprocess_output(predicted_text))
|
14 |
+
|
15 |
+
return cleaned_code
|
16 |
+
|
17 |
+
def preprocess_infer_input(text):
|
18 |
+
# Assuming the input is already a string, we don't need to access it as a dictionary
|
19 |
+
return f"latex: {text}"
|
20 |
+
|
21 |
+
def clean_generated_code(generated_code):
|
22 |
+
# Remove unwanted parts
|
23 |
+
print(':::generated_code::::', generated_code)
|
24 |
+
cleaned_code = generated_code.replace('*convert(latex, python.code)', '').strip()
|
25 |
+
|
26 |
+
# Optionally, format the code for better readability
|
27 |
+
cleaned_code = cleaned_code.replace('\n', '\n').replace(' ', ' ') # Adjust spacing if needed
|
28 |
+
|
29 |
+
return cleaned_code
|
30 |
+
|
31 |
+
def generate_solution(input_text):
|
32 |
+
input_text = preprocess_infer_input(input_text)
|
33 |
+
print(input_text)
|
34 |
+
|
35 |
+
input_ids = tokenizer(input_text, return_tensors='pt', padding="max_length", truncation=True, max_length=128).input_ids
|
36 |
+
input_ids = input_ids.to(model.device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = quantized_model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True)
|
40 |
+
|
41 |
+
predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
cleaned_code = clean_generated_code(postprocess_output(predicted_text))
|
43 |
+
return cleaned_code
|
44 |
+
|
45 |
+
|
46 |
|
47 |
# Create Gradio interface
|
48 |
+
iface = gr.Interface(fn=generate_solution, inputs="text", outputs="text")
|
49 |
|
50 |
# Launch the interface
|
51 |
iface.launch()
|