Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import T5ForConditionalGeneration, AutoTokenizer | |
import torch | |
# Load the quantized model and tokenizer from Hugging Face Hub | |
quantized_model = T5ForConditionalGeneration.from_pretrained("AbdulHadi806/codeT5-finetuned-LaTexToPythonCode-30kDataset") | |
tokenizer = AutoTokenizer.from_pretrained("AbdulHadi806/codeT5-finetuned-LaTexToPythonCode-30kDataset") | |
def preprocess_infer_input(text): | |
# Assuming the input is already a string, we don't need to access it as a dictionary | |
return f"latex: {text}" | |
def postprocess_output(text): | |
return text.replace('<newline>', '\n') | |
def clean_generated_code(generated_code): | |
# Remove unwanted parts | |
print(':::generated_code::::', generated_code) | |
cleaned_code = generated_code.replace('*convert(latex, python.code)', '').strip() | |
# Optionally, format the code for better readability | |
cleaned_code = cleaned_code.replace('\n', '\n').replace(' ', ' ') # Adjust spacing if needed | |
return cleaned_code | |
def generate_solution(input_text): | |
input_text = preprocess_infer_input(input_text) | |
print(input_text) | |
input_ids = tokenizer(input_text, return_tensors='pt', padding="max_length", truncation=True, max_length=128).input_ids | |
with torch.no_grad(): | |
outputs = quantized_model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True) | |
predicted_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
cleaned_code = clean_generated_code(postprocess_output(predicted_text)) | |
return cleaned_code | |
# Create Gradio interface | |
iface = gr.Interface(fn=generate_solution, inputs="text", outputs="text") | |
# Launch the interface | |
iface.launch() |