Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from groq import Groq
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Set up Groq client
|
8 |
+
client = Groq(api_key="")
|
9 |
+
|
10 |
+
# Define main function
|
11 |
+
def main():
|
12 |
+
st.title("AI-powered Resume Scanner")
|
13 |
+
|
14 |
+
# File upload
|
15 |
+
uploaded_file = st.file_uploader("Upload a resume", type=["pdf", "docx"])
|
16 |
+
|
17 |
+
# Job role input
|
18 |
+
job_role = st.text_input("Enter the job role")
|
19 |
+
|
20 |
+
if uploaded_file is not None and job_role:
|
21 |
+
# Process resume and get results
|
22 |
+
resume_text = parse_resume(uploaded_file)
|
23 |
+
if resume_text:
|
24 |
+
#st.write("Extracted Resume Text:")
|
25 |
+
#st.write(resume_text)
|
26 |
+
|
27 |
+
# Get resume analysis from the Groq model
|
28 |
+
name, degree, cgpa, skills, experience_score, ats_score = analyze_resume(resume_text, job_role)
|
29 |
+
|
30 |
+
# Display the results
|
31 |
+
st.write(f"**Candidate Name:** {name}")
|
32 |
+
st.write(f"**Degree:** {degree}")
|
33 |
+
st.write(f"**Latest CGPA/Percentage:** {cgpa}")
|
34 |
+
if skills:
|
35 |
+
st.write("**Skills:**")
|
36 |
+
for skill in skills:
|
37 |
+
st.write(f"- {skill}")
|
38 |
+
st.write(f"**Experience Score out of 10:** {experience_score}")
|
39 |
+
st.write(f"**ATS Score for {job_role} out of 10:** {ats_score}")
|
40 |
+
|
41 |
+
# Function to parse PDF/Word file
|
42 |
+
def parse_resume(uploaded_file):
|
43 |
+
# If PDF
|
44 |
+
if uploaded_file.type == "application/pdf":
|
45 |
+
from PyPDF2 import PdfReader
|
46 |
+
reader = PdfReader(uploaded_file)
|
47 |
+
text = ""
|
48 |
+
for page in reader.pages:
|
49 |
+
text += page.extract_text()
|
50 |
+
return text
|
51 |
+
# If Word
|
52 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
53 |
+
from docx import Document
|
54 |
+
doc = Document(uploaded_file)
|
55 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
56 |
+
return text
|
57 |
+
else:
|
58 |
+
st.error("Unsupported file type!")
|
59 |
+
return None
|
60 |
+
|
61 |
+
# Function to analyze resume using Groq API and LLaMA 3.1
|
62 |
+
# Function to analyze resume using Groq API and LLaMA 3.1
|
63 |
+
import json
|
64 |
+
|
65 |
+
# Function to analyze resume using Groq API and LLaMA 3.1
|
66 |
+
def analyze_resume(text, job_role):
|
67 |
+
# Construct prompt for Groq API
|
68 |
+
prompt = (
|
69 |
+
f"Extract the following details from the given resume text: \n"
|
70 |
+
f"1. Candidate's Name \n"
|
71 |
+
f"2. Latest Education CGPA or Percentage \n"
|
72 |
+
f"3. List of Skills \n"
|
73 |
+
f"4. Rate experience (projects, internships) on a scale from 0 to 10 \n"
|
74 |
+
f"5. Provide an ATS score for the job role: {job_role}\n"
|
75 |
+
f"Resume Text: {text}\n"
|
76 |
+
f"Format your response in a JSON object with the following structure: \n"
|
77 |
+
f"{{\n"
|
78 |
+
f' "name": "Candidate Name",\n'
|
79 |
+
f' "Degree": "Latest Education qualification or grade:",\n'
|
80 |
+
f' "cgpa": "Latest Education CGPA or Percentage",\n'
|
81 |
+
f' "skills": ["List of skills"],\n'
|
82 |
+
f' "experience_score": "Experience Score (0 to 10)",\n'
|
83 |
+
f' "ats_score": "ATS Score for the job role"\n'
|
84 |
+
f"}}"
|
85 |
+
)
|
86 |
+
|
87 |
+
# Call Groq API for chat completion
|
88 |
+
chat_completion = client.chat.completions.create(
|
89 |
+
messages=[{"role": "user", "content": prompt}],
|
90 |
+
model="llama3-8b-8192",
|
91 |
+
temperature=0.7,
|
92 |
+
max_tokens=1024,
|
93 |
+
top_p=1,
|
94 |
+
stream=False
|
95 |
+
)
|
96 |
+
|
97 |
+
# Get the raw output from the LLM
|
98 |
+
output = chat_completion.choices[0].message.content
|
99 |
+
# Clean up the output to avoid any parsing issues
|
100 |
+
cleaned_output = re.search(r'{[^}]*}', output).group()
|
101 |
+
# Try parsing the cleaned JSON
|
102 |
+
try:
|
103 |
+
response_data = json.loads(cleaned_output)
|
104 |
+
except json.JSONDecodeError:
|
105 |
+
st.error("Failed to parse response from model.")
|
106 |
+
st.write("Model Output:")
|
107 |
+
st.write(cleaned_output)
|
108 |
+
return None, None, None, None, None
|
109 |
+
|
110 |
+
# Extract information from the parsed JSON
|
111 |
+
name = response_data.get("name", "Name not found")
|
112 |
+
degree = response_data.get("Degree", "Degree not found")
|
113 |
+
cgpa = response_data.get("cgpa", "CGPA/Percentage not found")
|
114 |
+
skills = response_data.get("skills", "Skills not found")
|
115 |
+
experience_score = response_data.get("experience_score", "Experience score not found")
|
116 |
+
ats_score = response_data.get("ats_score", "ATS score not found")
|
117 |
+
|
118 |
+
return name, degree, cgpa, skills, experience_score, ats_score
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
# Function to extract the candidate's name
|
123 |
+
def extract_name(text):
|
124 |
+
name_pattern = re.compile(r"(Name:?\s*)([A-Z][a-z]+(?:\s[A-Z][a-z]+)*)")
|
125 |
+
match = name_pattern.search(text)
|
126 |
+
if match:
|
127 |
+
return match.group(2)
|
128 |
+
return "Name not found"
|
129 |
+
|
130 |
+
# Function to extract CGPA or Percentage
|
131 |
+
def extract_cgpa(text):
|
132 |
+
cgpa_pattern = re.compile(r"(\bCGPA\b|\bGPA\b|\bPercentage\b):?\s*(\d+\.?\d*)")
|
133 |
+
match = cgpa_pattern.search(text)
|
134 |
+
if match:
|
135 |
+
return match.group(2)
|
136 |
+
return "CGPA/Percentage not found"
|
137 |
+
|
138 |
+
# Function to extract skills
|
139 |
+
def extract_skills(text):
|
140 |
+
skills_pattern = re.compile(r"Skills:?\s*(.*?)(?:Experience|Education|$)", re.DOTALL)
|
141 |
+
match = skills_pattern.search(text)
|
142 |
+
if match:
|
143 |
+
skills = match.group(1)
|
144 |
+
return [skill.strip() for skill in skills.split(",")]
|
145 |
+
return "Skills not found"
|
146 |
+
|
147 |
+
# Function to extract experience score
|
148 |
+
def extract_experience_score(text):
|
149 |
+
experience_pattern = re.compile(r"Experience Score:?\s*(\d{1,2})")
|
150 |
+
match = experience_pattern.search(text)
|
151 |
+
if match:
|
152 |
+
return int(match.group(1))
|
153 |
+
# Heuristic: If no explicit experience score is given, infer it based on keywords
|
154 |
+
experience_keywords = ["internship", "project", "work experience", "employment"]
|
155 |
+
experience_count = sum(text.lower().count(keyword) for keyword in experience_keywords)
|
156 |
+
return min(10, experience_count) # Cap at 10
|
157 |
+
|
158 |
+
# Function to extract ATS score
|
159 |
+
def extract_ats_score(text):
|
160 |
+
ats_pattern = re.compile(r"ATS Score:?\s*(\d+\.?\d*)")
|
161 |
+
match = ats_pattern.search(text)
|
162 |
+
if match:
|
163 |
+
return float(match.group(1))
|
164 |
+
# Heuristic to generate a score based on skill-job match
|
165 |
+
return generate_ats_score(text)
|
166 |
+
|
167 |
+
# Heuristic function to generate ATS score
|
168 |
+
def generate_ats_score(text):
|
169 |
+
# Just a dummy heuristic for now
|
170 |
+
skills = extract_skills(text)
|
171 |
+
if not skills:
|
172 |
+
return 0
|
173 |
+
|
174 |
+
required_skills = ["Python", "Machine Learning", "Data Analysis"] # Add job role specific required skills
|
175 |
+
match_count = sum(1 for skill in required_skills if skill.lower() in [s.lower() for s in skills])
|
176 |
+
return round((match_count / len(required_skills)) * 10, 2)
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
main()
|