Abdulrahman Al-Ghamdi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
model_name = "Abduuu/ArabReview-Sentiment"
|
6 |
sentiment_pipeline = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
7 |
|
8 |
# Define label mapping for better readability
|
9 |
-
label_mapping = {
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
def predict_sentiment(review):
|
13 |
result = sentiment_pipeline(review)[0]
|
14 |
sentiment_label = label_mapping[result["label"]]
|
15 |
-
confidence =
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Launch the app
|
36 |
if __name__ == "__main__":
|
37 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Ensure the model is correctly loaded
|
5 |
model_name = "Abduuu/ArabReview-Sentiment"
|
6 |
sentiment_pipeline = pipeline("text-classification", model=model_name, tokenizer=model_name)
|
7 |
|
8 |
# Define label mapping for better readability
|
9 |
+
label_mapping = {
|
10 |
+
"LABEL_0": "سـلـبـي 😞",
|
11 |
+
"LABEL_1": "إيـجـابـي 😊"
|
12 |
+
}
|
13 |
|
14 |
+
# Function to predict sentiment with confidence visualization
|
15 |
def predict_sentiment(review):
|
16 |
result = sentiment_pipeline(review)[0]
|
17 |
sentiment_label = label_mapping[result["label"]]
|
18 |
+
confidence = round(result["score"] * 100, 2)
|
19 |
+
|
20 |
+
return {
|
21 |
+
"التصنيف": sentiment_label,
|
22 |
+
"نسبة الثقة": f"{confidence}%",
|
23 |
+
}
|
24 |
+
|
25 |
+
# Define Gradio interface with better UI
|
26 |
+
with gr.Blocks(theme=gr.themes.Default()) as iface:
|
27 |
+
gr.Markdown("<h1 style='text-align: center;'>🍽️ تحليل مشاعر مراجعات المطاعم 🚀</h1>")
|
28 |
+
gr.Markdown(
|
29 |
+
"<p style='text-align: center;'> 🤖 أدخل مراجعة مطعم بالعربية، وسيقوم النموذج بتحليل المشاعر وتحديدها **إيجابية** أو **سلبية**.</p>"
|
30 |
+
)
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
review_input = gr.Textbox(
|
34 |
+
label="✍️ أدخل مراجعتك",
|
35 |
+
placeholder="اكتب مراجعتك هنا...",
|
36 |
+
lines=2
|
37 |
+
)
|
38 |
+
|
39 |
+
submit_button = gr.Button("🔍 تحليل المراجعة")
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
output_label = gr.Textbox(label="🔹 التصنيف", interactive=False)
|
43 |
+
output_confidence = gr.Textbox(label="📊 نسبة الثقة", interactive=False)
|
44 |
+
|
45 |
+
submit_button.click(predict_sentiment, inputs=review_input, outputs=[output_label, output_confidence])
|
46 |
+
|
47 |
+
gr.Examples(
|
48 |
+
examples=[
|
49 |
+
["🍛 الطعام لذيذ جدًا والخدمة ممتازة!"],
|
50 |
+
["🤢 للأسف، التجربة كانت سيئة والطعام غير نظيف!"],
|
51 |
+
["👎 الخدمة كانت بطيئة والأسعار مرتفعة جدًا."],
|
52 |
+
["👌 تجربة رائعة، سأعود مجددًا!"],
|
53 |
+
["🔥 أفضل مطعم جربته على الإطلاق!"],
|
54 |
+
],
|
55 |
+
inputs=review_input,
|
56 |
+
)
|
57 |
|
58 |
# Launch the app
|
59 |
if __name__ == "__main__":
|
60 |
+
iface.launch()
|