File size: 3,110 Bytes
d620482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import gradio as gr
import torch.nn as nn
import torchvision
import cv2
import numpy as np
import tempfile



class MyModel(nn.Module):
    def __init__(self, num_classes=1):
        super(MyModel, self).__init__()  # Initialize nn.Module

        self.model = torchvision.models.video.r3d_18(pretrained=True)

        self.model.fc = nn.Linear(self.model.fc.in_features, num_classes)

    def preprocess_video(self, video_path, num_frames=40):
        """Preprocess video: sample frames, resize, normalize, and return tensor."""
        cap = cv2.VideoCapture(video_path)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        frame_indices = np.linspace(0, total_frames - 1, num=num_frames, dtype=int)
        sampled_frames = []

        for idx in frame_indices:
            cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
            ret, frame = cap.read()
            if not ret:
                continue
            frame = cv2.resize(frame, (112, 112))  # Resize to 112x112 for R3D-18
            frame = np.transpose(frame, (2, 0, 1))  # Channels-first
            sampled_frames.append(frame)

        cap.release()

        if len(sampled_frames) < num_frames:
            padding = np.zeros((num_frames - len(sampled_frames), 3, 112, 112))
            sampled_frames = np.concatenate([sampled_frames, padding], axis=0)

        # Convert to tensor and rearrange dimensions to (3, num_frames, 112, 112)
        return torch.tensor(sampled_frames).float().permute(1, 0, 2, 3).unsqueeze(0)


    def forward(self, x):
        return self.model(x)

    def test(self, video_paths):
        """Test the model on the given videos and compute accuracy."""
        self.model.eval()

        predictions = []

        with torch.no_grad():
            for i, video_path in enumerate(video_paths):

                X = self.preprocess_video(video_path)

                output = self.model(X)
                pred = torch.sigmoid(output)  # Apply sigmoid for binary classification

                # Track predictions
                predictions.append(pred.item())


        return predictions

    def save_model(self, filepath):
        torch.save({
            'model_state_dict': self.state_dict(),
        }, filepath)


    @staticmethod
    def load_model(filepath, num_classes=1):
        model = MyModel(num_classes)
        checkpoint = torch.load(filepath, weights_only=True)  
        model.load_state_dict(checkpoint['model_state_dict'])
 
        model.eval()  
        return model
    

model = MyModel().load_model('pre_3D_model.h5')

def classify_video(video):
    prob = model.test(video)

    label = "Non-violent" if prob >= 0.5 else "Violent"
    
    return label, prob



# Set up the Gradio interface
interface = gr.Interface(
    fn=classify_video,
    inputs=gr.Video(),  # Allows video upload
    outputs=[gr.Text(), gr.Number()],  # Outputs classification and probability
    title="Violence Detection in Videos",
    description="Upload a video to classify it as violent or non-violent with a probability score."
)

interface.launch(share=True, debug=True)