from modules.Device import Device import torch def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False): """#### Cast a weight tensor to a specified dtype and device. #### Args: - `weight` (torch.Tensor): The weight tensor. - `dtype` (torch.dtype): The data type. - `device` (torch.device): The device. - `non_blocking` (bool): Whether to use non-blocking transfer. - `copy` (bool): Whether to copy the tensor. #### Returns: - `torch.Tensor`: The casted weight tensor. """ if device is None or weight.device == device: if not copy: if dtype is None or weight.dtype == dtype: return weight return weight.to(dtype=dtype, copy=copy) r = torch.empty_like(weight, dtype=dtype, device=device) r.copy_(weight, non_blocking=non_blocking) return r def cast_to_input(weight, input, non_blocking=False, copy=True): """#### Cast a weight tensor to match the input tensor. #### Args: - `weight` (torch.Tensor): The weight tensor. - `input` (torch.Tensor): The input tensor. - `non_blocking` (bool): Whether to use non-blocking transfer. - `copy` (bool): Whether to copy the tensor. #### Returns: - `torch.Tensor`: The casted weight tensor. """ return cast_to( weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy ) def cast_bias_weight(s: torch.nn.Module, input: torch.Tensor= None, dtype:torch.dtype = None, device:torch.device = None, bias_dtype:torch.dtype = None) -> tuple: """#### Cast the bias and weight of a module to match the input tensor. #### Args: - `s` (torch.nn.Module): The module. - `input` (torch.Tensor): The input tensor. #### Returns: - `tuple`: The cast weight and bias. """ if input is not None: if dtype is None: dtype = input.dtype if bias_dtype is None: bias_dtype = dtype if device is None: device = input.device bias = None non_blocking = Device.device_supports_non_blocking(device) if s.bias is not None: has_function = s.bias_function is not None bias = cast_to( s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function ) if has_function: bias = s.bias_function(bias) has_function = s.weight_function is not None weight = cast_to( s.weight, dtype, device, non_blocking=non_blocking, copy=has_function ) if has_function: weight = s.weight_function(weight) return weight, bias class CastWeightBiasOp: """#### Class representing a cast weight and bias operation.""" comfy_cast_weights: bool = False weight_function: callable = None bias_function: callable = None class disable_weight_init: """#### Class representing a module with disabled weight initialization.""" class Linear(torch.nn.Linear, CastWeightBiasOp): """#### Linear layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the Linear layer.""" return None def forward_comfy_cast_weights(self, input): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ weight, bias = cast_bias_weight(self, input) return torch.nn.functional.linear(input, weight, bias) def forward(self, *args, **kwargs): """#### Forward pass for the Linear layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): """#### Conv1d layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the Conv1d layer.""" return None def forward_comfy_cast_weights(self, input): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ weight, bias = cast_bias_weight(self, input) return self._conv_forward(input, weight, bias) def forward(self, *args, **kwargs): """#### Forward pass for the Conv1d layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): """#### Conv2d layer with disabled weight initialization.""" def reset_parameters(self) -> None: """#### Reset the parameters of the Conv2d layer.""" return None def forward_cast_weights(self, input: torch.Tensor) -> torch.Tensor: """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ weight, bias = cast_bias_weight(self, input) return self._conv_forward(input, weight, bias) def forward(self, *args, **kwargs) -> torch.Tensor: """#### Forward pass for the Conv2d layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): """#### Conv3d layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the Conv3d layer.""" return None def forward_comfy_cast_weights(self, input): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ weight, bias = cast_bias_weight(self, input) return self._conv_forward(input, weight, bias) def forward(self, *args, **kwargs): """#### Forward pass for the Conv3d layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): """#### GroupNorm layer with disabled weight initialization.""" def reset_parameters(self) -> None: """#### Reset the parameters of the GroupNorm layer.""" return None def forward_comfy_cast_weights(self, input): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ weight, bias = cast_bias_weight(self, input) return torch.nn.functional.group_norm( input, self.num_groups, weight, bias, self.eps ) def forward(self, *args, **kwargs): """#### Forward pass for the GroupNorm layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): """#### LayerNorm layer with disabled weight initialization.""" def reset_parameters(self) -> None: """#### Reset the parameters of the LayerNorm layer.""" return None def forward_cast_weights(self, input: torch.Tensor) -> torch.Tensor: """#### Forward pass with cast weights. #### Args: - `input` (torch.Tensor): The input tensor. #### Returns: - `torch.Tensor`: The output tensor. """ if self.weight is not None: weight, bias = cast_bias_weight(self, input) else: weight = None bias = None return torch.nn.functional.layer_norm( input, self.normalized_shape, weight, bias, self.eps ) def forward(self, *args, **kwargs) -> torch.Tensor: """#### Forward pass for the LayerNorm layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): """#### ConvTranspose2d layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the ConvTranspose2d layer.""" return None def forward_comfy_cast_weights(self, input, output_size=None): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. - `output_size` (torch.Size): The output size. #### Returns: - `torch.Tensor`: The output tensor. """ num_spatial_dims = 2 output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation, ) weight, bias = cast_bias_weight(self, input) return torch.nn.functional.conv_transpose2d( input, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation, ) def forward(self, *args, **kwargs): """#### Forward pass for the ConvTranspose2d layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): """#### ConvTranspose1d layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the ConvTranspose1d layer.""" return None def forward_comfy_cast_weights(self, input, output_size=None): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. - `output_size` (torch.Size): The output size. #### Returns: - `torch.Tensor`: The output tensor. """ num_spatial_dims = 1 output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation, ) weight, bias = cast_bias_weight(self, input) return torch.nn.functional.conv_transpose1d( input, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation, ) def forward(self, *args, **kwargs): """#### Forward pass for the ConvTranspose1d layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Embedding(torch.nn.Embedding, CastWeightBiasOp): """#### Embedding layer with disabled weight initialization.""" def reset_parameters(self): """#### Reset the parameters of the Embedding layer.""" self.bias = None return None def forward_comfy_cast_weights(self, input, out_dtype=None): """#### Forward pass with comfy cast weights. #### Args: - `input` (torch.Tensor): The input tensor. - `out_dtype` (torch.dtype): The output data type. #### Returns: - `torch.Tensor`: The output tensor. """ output_dtype = out_dtype if ( self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16 ): out_dtype = None weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype) return torch.nn.functional.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ).to(dtype=output_dtype) def forward(self, *args, **kwargs): """#### Forward pass for the Embedding layer. #### Args: - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.Tensor`: The output tensor. """ if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: if "out_dtype" in kwargs: kwargs.pop("out_dtype") return super().forward(*args, **kwargs) @classmethod def conv_nd(s, dims: int, *args, **kwargs) -> torch.nn.Conv2d: """#### Create a Conv2d layer with the specified dimensions. #### Args: - `dims` (int): The number of dimensions. - `*args`: Variable length argument list. - `**kwargs`: Arbitrary keyword arguments. #### Returns: - `torch.nn.Conv2d`: The Conv2d layer. """ if dims == 2: return s.Conv2d(*args, **kwargs) elif dims == 3: return s.Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") class manual_cast(disable_weight_init): """#### Class representing a module with manual casting.""" class Linear(disable_weight_init.Linear): """#### Linear layer with manual casting.""" comfy_cast_weights: bool = True class Conv1d(disable_weight_init.Conv1d): """#### Conv1d layer with manual casting.""" comfy_cast_weights = True class Conv2d(disable_weight_init.Conv2d): """#### Conv2d layer with manual casting.""" comfy_cast_weights: bool = True class Conv3d(disable_weight_init.Conv3d): """#### Conv3d layer with manual casting.""" comfy_cast_weights = True class GroupNorm(disable_weight_init.GroupNorm): """#### GroupNorm layer with manual casting.""" comfy_cast_weights: bool = True class LayerNorm(disable_weight_init.LayerNorm): """#### LayerNorm layer with manual casting.""" comfy_cast_weights: bool = True class ConvTranspose2d(disable_weight_init.ConvTranspose2d): """#### ConvTranspose2d layer with manual casting.""" comfy_cast_weights = True class ConvTranspose1d(disable_weight_init.ConvTranspose1d): """#### ConvTranspose1d layer with manual casting.""" comfy_cast_weights = True class Embedding(disable_weight_init.Embedding): """#### Embedding layer with manual casting.""" comfy_cast_weights = True