from typing import List import torch def bislerp(samples: torch.Tensor, width: int, height: int) -> torch.Tensor: """#### Perform bilinear interpolation on samples. #### Args: - `samples` (torch.Tensor): The input samples. - `width` (int): The target width. - `height` (int): The target height. #### Returns: - `torch.Tensor`: The interpolated samples. """ def slerp(b1: torch.Tensor, b2: torch.Tensor, r: torch.Tensor) -> torch.Tensor: """#### Perform spherical linear interpolation between two vectors. #### Args: - `b1` (torch.Tensor): The first vector. - `b2` (torch.Tensor): The second vector. - `r` (torch.Tensor): The interpolation ratio. #### Returns: - `torch.Tensor`: The interpolated vector. """ c = b1.shape[-1] # norms b1_norms = torch.norm(b1, dim=-1, keepdim=True) b2_norms = torch.norm(b2, dim=-1, keepdim=True) # normalize b1_normalized = b1 / b1_norms b2_normalized = b2 / b2_norms # zero when norms are zero b1_normalized[b1_norms.expand(-1, c) == 0.0] = 0.0 b2_normalized[b2_norms.expand(-1, c) == 0.0] = 0.0 # slerp dot = (b1_normalized * b2_normalized).sum(1) omega = torch.acos(dot) so = torch.sin(omega) # technically not mathematically correct, but more pleasing? res = (torch.sin((1.0 - r.squeeze(1)) * omega) / so).unsqueeze( 1 ) * b1_normalized + (torch.sin(r.squeeze(1) * omega) / so).unsqueeze( 1 ) * b2_normalized res *= (b1_norms * (1.0 - r) + b2_norms * r).expand(-1, c) # edge cases for same or polar opposites res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] res[dot < 1e-5 - 1] = (b1 * (1.0 - r) + b2 * r)[dot < 1e-5 - 1] return res def generate_bilinear_data( length_old: int, length_new: int, device: torch.device ) -> List[torch.Tensor]: """#### Generate bilinear data for interpolation. #### Args: - `length_old` (int): The old length. - `length_new` (int): The new length. - `device` (torch.device): The device to use. #### Returns: - `torch.Tensor`: The ratios. - `torch.Tensor`: The first coordinates. - `torch.Tensor`: The second coordinates. """ coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape( (1, 1, 1, -1) ) coords_1 = torch.nn.functional.interpolate( coords_1, size=(1, length_new), mode="bilinear" ) ratios = coords_1 - coords_1.floor() coords_1 = coords_1.to(torch.int64) coords_2 = ( torch.arange(length_old, dtype=torch.float32, device=device).reshape( (1, 1, 1, -1) ) + 1 ) coords_2[:, :, :, -1] -= 1 coords_2 = torch.nn.functional.interpolate( coords_2, size=(1, length_new), mode="bilinear" ) coords_2 = coords_2.to(torch.int64) return ratios, coords_1, coords_2 orig_dtype = samples.dtype samples = samples.float() n, c, h, w = samples.shape h_new, w_new = (height, width) # linear w ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) coords_1 = coords_1.expand((n, c, h, -1)) coords_2 = coords_2.expand((n, c, h, -1)) ratios = ratios.expand((n, 1, h, -1)) pass_1 = samples.gather(-1, coords_1).movedim(1, -1).reshape((-1, c)) pass_2 = samples.gather(-1, coords_2).movedim(1, -1).reshape((-1, c)) ratios = ratios.movedim(1, -1).reshape((-1, 1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h, w_new, c).movedim(-1, 1) # linear h ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) coords_1 = coords_1.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) coords_2 = coords_2.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) ratios = ratios.reshape((1, 1, -1, 1)).expand((n, 1, -1, w_new)) pass_1 = result.gather(-2, coords_1).movedim(1, -1).reshape((-1, c)) pass_2 = result.gather(-2, coords_2).movedim(1, -1).reshape((-1, c)) ratios = ratios.movedim(1, -1).reshape((-1, 1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) return result.to(orig_dtype) def common_upscale(samples: List, width: int, height: int) -> torch.Tensor: """#### Upscales the given samples to the specified width and height using the specified method and crop settings. #### Args: - `samples` (list): The list of samples to be upscaled. - `width` (int): The target width for the upscaled samples. - `height` (int): The target height for the upscaled samples. #### Returns: - `torch.Tensor`: The upscaled samples. """ s = samples return bislerp(s, width, height) class LatentUpscale: """#### A class to upscale latent codes.""" def upscale(self, samples: dict, width: int, height: int) -> tuple: """#### Upscales the given latent codes. #### Args: - `samples` (dict): The latent codes to be upscaled. - `width` (int): The target width for the upscaled samples. - `height` (int): The target height for the upscaled samples. #### Returns: - `tuple`: The upscaled samples. """ if width == 0 and height == 0: s = samples else: s = samples.copy() width = max(64, width) height = max(64, height) s["samples"] = common_upscale(samples["samples"], width // 8, height // 8) return (s,)