import logging import platform import sys from enum import Enum from typing import Tuple, Union import packaging.version import psutil import torch if packaging.version.parse(torch.__version__) >= packaging.version.parse("1.12.0"): torch.backends.cuda.matmul.allow_tf32 = True class VRAMState(Enum): """#### Enum for VRAM states. """ DISABLED = 0 # No vram present: no need to move _internal to vram NO_VRAM = 1 # Very low vram: enable all the options to save vram LOW_VRAM = 2 NORMAL_VRAM = 3 HIGH_VRAM = 4 SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but _internal still need to be moved between both. class CPUState(Enum): """#### Enum for CPU states. """ GPU = 0 CPU = 1 MPS = 2 # Determine VRAM State vram_state = VRAMState.NORMAL_VRAM set_vram_to = VRAMState.NORMAL_VRAM cpu_state = CPUState.GPU total_vram = 0 lowvram_available = True xpu_available = False directml_enabled = False try: if torch.xpu.is_available(): xpu_available = True except: pass try: if torch.backends.mps.is_available(): cpu_state = CPUState.MPS import torch.mps except: pass def is_intel_xpu() -> bool: """#### Check if Intel XPU is available. #### Returns: - `bool`: Whether Intel XPU is available. """ global cpu_state global xpu_available if cpu_state == CPUState.GPU: if xpu_available: return True return False def get_torch_device() -> torch.device: """#### Get the torch device. #### Returns: - `torch.device`: The torch device. """ global directml_enabled global cpu_state if directml_enabled: global directml_device return directml_device if cpu_state == CPUState.MPS: return torch.device("mps") if cpu_state == CPUState.CPU: return torch.device("cpu") else: if is_intel_xpu(): return torch.device("xpu", torch.xpu.current_device()) else: if torch.cuda.is_available(): return torch.device(torch.cuda.current_device()) else: return torch.device("cpu") def get_total_memory(dev: torch.device = None, torch_total_too: bool = False) -> int: """#### Get the total memory. #### Args: - `dev` (torch.device, optional): The device. Defaults to None. - `torch_total_too` (bool, optional): Whether to get the total memory in PyTorch. Defaults to False. #### Returns: - `int`: The total memory. """ global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"): mem_total = psutil.virtual_memory().total mem_total_torch = mem_total else: if directml_enabled: mem_total = 1024 * 1024 * 1024 mem_total_torch = mem_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) mem_reserved = stats["reserved_bytes.all.current"] mem_total_torch = mem_reserved mem_total = torch.xpu.get_device_properties(dev).total_memory else: stats = torch.cuda.memory_stats(dev) mem_reserved = stats["reserved_bytes.all.current"] _, mem_total_cuda = torch.cuda.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_cuda if torch_total_too: return (mem_total, mem_total_torch) else: return mem_total total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024) logging.info( "Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram) ) try: OOM_EXCEPTION = torch.cuda.OutOfMemoryError except: OOM_EXCEPTION = Exception XFORMERS_VERSION = "" XFORMERS_ENABLED_VAE = True try: import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True try: XFORMERS_IS_AVAILABLE = xformers._has_cpp_library except: pass try: XFORMERS_VERSION = xformers.version.__version__ logging.info("xformers version: {}".format(XFORMERS_VERSION)) if XFORMERS_VERSION.startswith("0.0.18"): logging.warning( "\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images." ) logging.warning( "Please downgrade or upgrade xformers to a different version.\n" ) XFORMERS_ENABLED_VAE = False except: pass except: XFORMERS_IS_AVAILABLE = False def is_nvidia() -> bool: """#### Checks if user has an Nvidia GPU #### Returns - `bool`: Whether the GPU is Nvidia """ global cpu_state if cpu_state == CPUState.GPU: if torch.version.cuda: return True return False ENABLE_PYTORCH_ATTENTION = False VAE_DTYPE = torch.float32 try: if is_nvidia(): torch_version = torch.version.__version__ if int(torch_version[0]) >= 2: if ENABLE_PYTORCH_ATTENTION is False: ENABLE_PYTORCH_ATTENTION = True if ( torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8 ): VAE_DTYPE = torch.bfloat16 except: pass if is_intel_xpu(): VAE_DTYPE = torch.bfloat16 if ENABLE_PYTORCH_ATTENTION: torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) FORCE_FP32 = False FORCE_FP16 = False if lowvram_available: if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): vram_state = set_vram_to if cpu_state != CPUState.GPU: vram_state = VRAMState.DISABLED if cpu_state == CPUState.MPS: vram_state = VRAMState.SHARED logging.info(f"Set vram state to: {vram_state.name}") DISABLE_SMART_MEMORY = False if DISABLE_SMART_MEMORY: logging.info("Disabling smart memory management") def get_torch_device_name(device: torch.device) -> str: """#### Get the name of the torch compatible device #### Args: - `device` (torch.device): the device #### Returns: - `str`: the name of the device """ if hasattr(device, "type"): if device.type == "cuda": try: allocator_backend = torch.cuda.get_allocator_backend() except: allocator_backend = "" return "{} {} : {}".format( device, torch.cuda.get_device_name(device), allocator_backend ) else: return "{}".format(device.type) elif is_intel_xpu(): return "{} {}".format(device, torch.xpu.get_device_name(device)) else: return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) try: logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) except: logging.warning("Could not pick default device.") logging.info("VAE dtype: {}".format(VAE_DTYPE)) current_loaded_models = [] def module_size(module: torch.nn.Module) -> int: """#### Get the size of a module #### Args: - `module` (torch.nn.Module): The module #### Returns: - `int`: The size of the module """ module_mem = 0 sd = module.state_dict() for k in sd: t = sd[k] module_mem += t.nelement() * t.element_size() return module_mem class LoadedModel: """#### Class to load a model """ def __init__(self, model: torch.nn.Module): """#### Initialize the class #### Args: - `model`: The model """ self.model = model self.device = model.load_device self.weights_loaded = False self.real_model = None def model_memory(self): """#### Get the model memory #### Returns: - `int`: The model memory """ return self.model.model_size() def model_offloaded_memory(self): """#### Get the offloaded model memory #### Returns: - `int`: The offloaded model memory """ return self.model.model_size() - self.model.loaded_size() def model_memory_required(self, device: torch.device) -> int: """#### Get the required model memory #### Args: - `device`: The device #### Returns: - `int`: The required model memory """ if hasattr(self.model, 'current_loaded_device') and device == self.model.current_loaded_device(): return self.model_offloaded_memory() else: return self.model_memory() def model_load(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module: """#### Load the model #### Args: - `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0. - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. #### Returns: - `torch.nn.Module`: The real model """ patch_model_to = self.device self.model.model_patches_to(self.device) self.model.model_patches_to(self.model.model_dtype()) load_weights = not self.weights_loaded try: if hasattr(self.model, "patch_model_lowvram") and lowvram_model_memory > 0 and load_weights: self.real_model = self.model.patch_model_lowvram( device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, ) else: self.real_model = self.model.patch_model( device_to=patch_model_to, patch_weights=load_weights ) except Exception as e: self.model.unpatch_model(self.model.offload_device) self.model_unload() raise e self.weights_loaded = True return self.real_model def model_load_flux(self, lowvram_model_memory: int = 0, force_patch_weights: bool = False) -> torch.nn.Module: """#### Load the model #### Args: - `lowvram_model_memory` (int, optional): The low VRAM model memory. Defaults to 0. - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. #### Returns: - `torch.nn.Module`: The real model """ patch_model_to = self.device self.model.model_patches_to(self.device) self.model.model_patches_to(self.model.model_dtype()) load_weights = not self.weights_loaded if self.model.loaded_size() > 0: use_more_vram = lowvram_model_memory if use_more_vram == 0: use_more_vram = 1e32 self.model_use_more_vram(use_more_vram) else: try: self.real_model = self.model.patch_model_flux( device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, load_weights=load_weights, force_patch_weights=force_patch_weights, ) except Exception as e: self.model.unpatch_model(self.model.offload_device) self.model_unload() raise e if ( is_intel_xpu() and "ipex" in globals() and self.real_model is not None ): import ipex with torch.no_grad(): self.real_model = ipex.optimize( self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True, ) self.weights_loaded = True return self.real_model def should_reload_model(self, force_patch_weights: bool = False) -> bool: """#### Checks if the model should be reloaded #### Args: - `force_patch_weights` (bool, optional): If model reloading should be enforced. Defaults to False. #### Returns: - `bool`: Whether the model should be reloaded """ if force_patch_weights and self.model.lowvram_patch_counter > 0: return True return False def model_unload(self, unpatch_weights: bool = True) -> None: """#### Unloads the patched model #### Args: - `unpatch_weights` (bool, optional): Whether the weights should be unpatched. Defaults to True. """ self.model.unpatch_model( self.model.offload_device, unpatch_weights=unpatch_weights ) self.model.model_patches_to(self.model.offload_device) self.weights_loaded = self.weights_loaded and not unpatch_weights self.real_model = None def model_use_more_vram(self, extra_memory: int) -> int: """#### Use more VRAM #### Args: - `extra_memory`: The extra memory """ return self.model.partially_load(self.device, extra_memory) def __eq__(self, other: torch.nn.Module) -> bool: """#### Verify if the model is equal to another #### Args: - `other` (torch.nn.Module): the other model #### Returns: - `bool`: Whether the two models are equal """ return self.model is other.model def minimum_inference_memory() -> int: """#### The minimum memory requirement for inference, equals to 1024^3 #### Returns: - `int`: the memory requirement """ return 1024 * 1024 * 1024 def unload_model_clones(model: torch.nn.Module, unload_weights_only:bool = True, force_unload: bool = True) -> bool: """#### Unloads the model clones #### Args: - `model` (torch.nn.Module): The model - `unload_weights_only` (bool, optional): Whether to unload only the weights. Defaults to True. - `force_unload` (bool, optional): Whether to force the unload. Defaults to True. #### Returns: - `bool`: Whether the model was unloaded """ to_unload = [] for i in range(len(current_loaded_models)): if model.is_clone(current_loaded_models[i].model): to_unload = [i] + to_unload if len(to_unload) == 0: return True same_weights = 0 if same_weights == len(to_unload): unload_weight = False else: unload_weight = True if not force_unload: if unload_weights_only and unload_weight is False: return None for i in to_unload: logging.debug("unload clone {} {}".format(i, unload_weight)) current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) return unload_weight def free_memory(memory_required: int, device: torch.device, keep_loaded: list = []) -> None: """#### Free memory #### Args: - `memory_required` (int): The required memory - `device` (torch.device): The device - `keep_loaded` (list, optional): The list of loaded models to keep. Defaults to []. """ unloaded_model = [] can_unload = [] for i in range(len(current_loaded_models) - 1, -1, -1): shift_model = current_loaded_models[i] if shift_model.device == device: if shift_model not in keep_loaded: can_unload.append( (sys.getrefcount(shift_model.model), shift_model.model_memory(), i) ) for x in sorted(can_unload): i = x[-1] if not DISABLE_SMART_MEMORY: if get_free_memory(device) > memory_required: break current_loaded_models[i].model_unload() unloaded_model.append(i) for i in sorted(unloaded_model, reverse=True): current_loaded_models.pop(i) if len(unloaded_model) > 0: soft_empty_cache() else: if vram_state != VRAMState.HIGH_VRAM: mem_free_total, mem_free_torch = get_free_memory( device, torch_free_too=True ) if mem_free_torch > mem_free_total * 0.25: soft_empty_cache() def use_more_memory(extra_memory: int, loaded_models: list, device: torch.device) -> None: """#### Use more memory #### Args: - `extra_memory` (int): The extra memory - `loaded_models` (list): The loaded models - `device` (torch.device): The device """ for m in loaded_models: if m.device == device: extra_memory -= m.model_use_more_vram(extra_memory) if extra_memory <= 0: break WINDOWS = any(platform.win32_ver()) EXTRA_RESERVED_VRAM = 400 * 1024 * 1024 if WINDOWS: EXTRA_RESERVED_VRAM = ( 600 * 1024 * 1024 ) # Windows is higher because of the shared vram issue def extra_reserved_memory() -> int: """#### Extra reserved memory #### Returns: - `int`: The extra reserved memory """ return EXTRA_RESERVED_VRAM def offloaded_memory(loaded_models: list, device: torch.device) -> int: """#### Offloaded memory #### Args: - `loaded_models` (list): The loaded models - `device` (torch.device): The device #### Returns: - `int`: The offloaded memory """ offloaded_mem = 0 for m in loaded_models: if m.device == device: offloaded_mem += m.model_offloaded_memory() return offloaded_mem def load_models_gpu(models: list, memory_required: int = 0, force_patch_weights: bool = False, minimum_memory_required=None, force_full_load=False, flux_enabled: bool = False) -> None: """#### Load models on the GPU #### Args: - `models`(list): The models - `memory_required` (int, optional): The required memory. Defaults to 0. - `force_patch_weights` (bool, optional): Whether to force patch the weights. Defaults to False. - `minimum_memory_required` (int, optional): The minimum memory required. Defaults to None. - `force_full_load` (bool, optional - `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False. """ global vram_state if not flux_enabled: inference_memory = minimum_inference_memory() extra_mem = max(inference_memory, memory_required) models = set(models) models_to_load = [] models_already_loaded = [] for x in models: loaded_model = LoadedModel(x) loaded = None try: loaded_model_index = current_loaded_models.index(loaded_model) except: loaded_model_index = None if loaded_model_index is not None: loaded = current_loaded_models[loaded_model_index] if loaded.should_reload_model(force_patch_weights=force_patch_weights): current_loaded_models.pop(loaded_model_index).model_unload( unpatch_weights=True ) loaded = None else: models_already_loaded.append(loaded) if loaded is None: if hasattr(x, "model"): logging.info(f"Requested to load {x.model.__class__.__name__}") models_to_load.append(loaded_model) if len(models_to_load) == 0: devs = set(map(lambda a: a.device, models_already_loaded)) for d in devs: if d != torch.device("cpu"): free_memory(extra_mem, d, models_already_loaded) return logging.info( f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}" ) total_memory_required = {} for loaded_model in models_to_load: if ( unload_model_clones( loaded_model.model, unload_weights_only=True, force_unload=False ) is True ): # unload clones where the weights are different total_memory_required[loaded_model.device] = total_memory_required.get( loaded_model.device, 0 ) + loaded_model.model_memory_required(loaded_model.device) for device in total_memory_required: if device != torch.device("cpu"): free_memory( total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded, ) for loaded_model in models_to_load: weights_unloaded = unload_model_clones( loaded_model.model, unload_weights_only=False, force_unload=False ) # unload the rest of the clones where the weights can stay loaded if weights_unloaded is not None: loaded_model.weights_loaded = not weights_unloaded for loaded_model in models_to_load: model = loaded_model.model torch_dev = model.load_device if is_device_cpu(torch_dev): vram_set_state = VRAMState.DISABLED else: vram_set_state = vram_state lowvram_model_memory = 0 if lowvram_available and ( vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM ): model_size = loaded_model.model_memory_required(torch_dev) current_free_mem = get_free_memory(torch_dev) lowvram_model_memory = int( max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3) ) if model_size > ( current_free_mem - inference_memory ): # only switch to lowvram if really necessary vram_set_state = VRAMState.LOW_VRAM else: lowvram_model_memory = 0 if vram_set_state == VRAMState.NO_VRAM: lowvram_model_memory = 64 * 1024 * 1024 loaded_model.model_load( lowvram_model_memory, force_patch_weights=force_patch_weights ) current_loaded_models.insert(0, loaded_model) return else: inference_memory = minimum_inference_memory() extra_mem = max(inference_memory, memory_required + extra_reserved_memory()) if minimum_memory_required is None: minimum_memory_required = extra_mem else: minimum_memory_required = max( inference_memory, minimum_memory_required + extra_reserved_memory() ) models = set(models) models_to_load = [] models_already_loaded = [] for x in models: loaded_model = LoadedModel(x) loaded = None try: loaded_model_index = current_loaded_models.index(loaded_model) except: loaded_model_index = None if loaded_model_index is not None: loaded = current_loaded_models[loaded_model_index] if loaded.should_reload_model( force_patch_weights=force_patch_weights ): # TODO: cleanup this model reload logic current_loaded_models.pop(loaded_model_index).model_unload( unpatch_weights=True ) loaded = None else: loaded.currently_used = True models_already_loaded.append(loaded) if loaded is None: if hasattr(x, "model"): logging.info(f"Requested to load {x.model.__class__.__name__}") models_to_load.append(loaded_model) if len(models_to_load) == 0: devs = set(map(lambda a: a.device, models_already_loaded)) for d in devs: if d != torch.device("cpu"): free_memory( extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded, ) free_mem = get_free_memory(d) if free_mem < minimum_memory_required: logging.info( "Unloading models for lowram load." ) # TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed. models_to_load = free_memory(minimum_memory_required, d) logging.info("{} models unloaded.".format(len(models_to_load))) else: use_more_memory( free_mem - minimum_memory_required, models_already_loaded, d ) if len(models_to_load) == 0: return logging.info( f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}" ) total_memory_required = {} for loaded_model in models_to_load: unload_model_clones( loaded_model.model, unload_weights_only=True, force_unload=False ) # unload clones where the weights are different total_memory_required[loaded_model.device] = total_memory_required.get( loaded_model.device, 0 ) + loaded_model.model_memory_required(loaded_model.device) for loaded_model in models_already_loaded: total_memory_required[loaded_model.device] = total_memory_required.get( loaded_model.device, 0 ) + loaded_model.model_memory_required(loaded_model.device) for loaded_model in models_to_load: weights_unloaded = unload_model_clones( loaded_model.model, unload_weights_only=False, force_unload=False ) # unload the rest of the clones where the weights can stay loaded if weights_unloaded is not None: loaded_model.weights_loaded = not weights_unloaded for device in total_memory_required: if device != torch.device("cpu"): free_memory( total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded, ) for loaded_model in models_to_load: model = loaded_model.model torch_dev = model.load_device if is_device_cpu(torch_dev): vram_set_state = VRAMState.DISABLED else: vram_set_state = vram_state lowvram_model_memory = 0 if ( lowvram_available and ( vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM ) and not force_full_load ): model_size = loaded_model.model_memory_required(torch_dev) current_free_mem = get_free_memory(torch_dev) lowvram_model_memory = max( 64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min( current_free_mem * 0.4, current_free_mem - minimum_inference_memory(), ), ) if ( model_size <= lowvram_model_memory ): # only switch to lowvram if really necessary lowvram_model_memory = 0 if vram_set_state == VRAMState.NO_VRAM: lowvram_model_memory = 64 * 1024 * 1024 loaded_model.model_load_flux( lowvram_model_memory, force_patch_weights=force_patch_weights ) current_loaded_models.insert(0, loaded_model) devs = set(map(lambda a: a.device, models_already_loaded)) for d in devs: if d != torch.device("cpu"): free_mem = get_free_memory(d) if free_mem > minimum_memory_required: use_more_memory( free_mem - minimum_memory_required, models_already_loaded, d ) return def load_model_gpu(model: torch.nn.Module, flux_enabled:bool = False) -> None: """#### Load a model on the GPU #### Args: - `model` (torch.nn.Module): The model - `flux_enable` (bool, optional): Whether flux is enabled. Defaults to False. """ return load_models_gpu([model], flux_enabled=flux_enabled) def cleanup_models(keep_clone_weights_loaded:bool = False): """#### Cleanup the models #### Args: - `keep_clone_weights_loaded` (bool, optional): Whether to keep the clone weights loaded. Defaults to False. """ to_delete = [] for i in range(len(current_loaded_models)): if sys.getrefcount(current_loaded_models[i].model) <= 2: if not keep_clone_weights_loaded: to_delete = [i] + to_delete elif ( sys.getrefcount(current_loaded_models[i].real_model) <= 3 ): # references from .real_model + the .model to_delete = [i] + to_delete for i in to_delete: x = current_loaded_models.pop(i) x.model_unload() del x def dtype_size(dtype: torch.dtype) -> int: """#### Get the size of a dtype #### Args: - `dtype` (torch.dtype): The dtype #### Returns: - `int`: The size of the dtype """ dtype_size = 4 if dtype == torch.float16 or dtype == torch.bfloat16: dtype_size = 2 elif dtype == torch.float32: dtype_size = 4 else: try: dtype_size = dtype.itemsize except: # Old pytorch doesn't have .itemsize pass return dtype_size def unet_offload_device() -> torch.device: """#### Get the offload device for UNet #### Returns: - `torch.device`: The offload device """ if vram_state == VRAMState.HIGH_VRAM: return get_torch_device() else: return torch.device("cpu") def unet_inital_load_device(parameters, dtype) -> torch.device: """#### Get the initial load device for UNet #### Args: - `parameters` (int): The parameters - `dtype` (torch.dtype): The dtype #### Returns: - `torch.device`: The initial load device """ torch_dev = get_torch_device() if vram_state == VRAMState.HIGH_VRAM: return torch_dev cpu_dev = torch.device("cpu") if DISABLE_SMART_MEMORY: return cpu_dev model_size = dtype_size(dtype) * parameters mem_dev = get_free_memory(torch_dev) mem_cpu = get_free_memory(cpu_dev) if mem_dev > mem_cpu and model_size < mem_dev: return torch_dev else: return cpu_dev def unet_dtype( device: torch.dtype = None, model_params: int = 0, supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32], ) -> torch.dtype: """#### Get the dtype for UNet #### Args: - `device` (torch.dtype, optional): The device. Defaults to None. - `model_params` (int, optional): The model parameters. Defaults to 0. - `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32]. #### Returns: - `torch.dtype`: The dtype """ if should_use_fp16(device=device, model_params=model_params, manual_cast=True): if torch.float16 in supported_dtypes: return torch.float16 if should_use_bf16(device, model_params=model_params, manual_cast=True): if torch.bfloat16 in supported_dtypes: return torch.bfloat16 return torch.float32 # None means no manual cast def unet_manual_cast( weight_dtype: torch.dtype, inference_device: torch.device, supported_dtypes: list = [torch.float16, torch.bfloat16, torch.float32], ) -> torch.dtype: """#### Manual cast for UNet #### Args: - `weight_dtype` (torch.dtype): The dtype of the weights - `inference_device` (torch.device): The device used for inference - `supported_dtypes` (list, optional): The supported dtypes. Defaults to [torch.float16, torch.bfloat16, torch.float32]. #### Returns: - `torch.dtype`: The dtype """ if weight_dtype == torch.float32: return None fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) if fp16_supported and weight_dtype == torch.float16: return None bf16_supported = should_use_bf16(inference_device) if bf16_supported and weight_dtype == torch.bfloat16: return None if fp16_supported and torch.float16 in supported_dtypes: return torch.float16 elif bf16_supported and torch.bfloat16 in supported_dtypes: return torch.bfloat16 else: return torch.float32 def text_encoder_offload_device() -> torch.device: """#### Get the offload device for the text encoder #### Returns: - `torch.device`: The offload device """ return torch.device("cpu") def text_encoder_device() -> torch.device: """#### Get the device for the text encoder #### Returns: - `torch.device`: The device """ if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: if should_use_fp16(prioritize_performance=False): return get_torch_device() else: return torch.device("cpu") else: return torch.device("cpu") def text_encoder_initial_device(load_device: torch.device, offload_device: torch.device, model_size: int = 0) -> torch.device: """#### Get the initial device for the text encoder #### Args: - `load_device` (torch.device): The load device - `offload_device` (torch.device): The offload device - `model_size` (int, optional): The model size. Defaults to 0. #### Returns: - `torch.device`: The initial device """ if load_device == offload_device or model_size <= 1024 * 1024 * 1024: return offload_device if is_device_mps(load_device): return offload_device mem_l = get_free_memory(load_device) mem_o = get_free_memory(offload_device) if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l: return load_device else: return offload_device def text_encoder_dtype(device: torch.device = None) -> torch.dtype: """#### Get the dtype for the text encoder #### Args: - `device` (torch.device, optional): The device used by the text encoder. Defaults to None. Returns: torch.dtype: The dtype """ if is_device_cpu(device): return torch.float16 return torch.float16 def intermediate_device() -> torch.device: """#### Get the intermediate device #### Returns: - `torch.device`: The intermediate device """ return torch.device("cpu") def vae_device() -> torch.device: """#### Get the VAE device #### Returns: - `torch.device`: The VAE device """ return get_torch_device() def vae_offload_device() -> torch.device: """#### Get the offload device for VAE #### Returns: - `torch.device`: The offload device """ return torch.device("cpu") def vae_dtype(): """#### Get the dtype for VAE #### Returns: - `torch.dtype`: The dtype """ global VAE_DTYPE return VAE_DTYPE def get_autocast_device(dev: torch.device) -> str: """#### Get the autocast device #### Args: - `dev` (torch.device): The device #### Returns: - `str`: The autocast device type """ if hasattr(dev, "type"): return dev.type return "cuda" def supports_dtype(device: torch.device, dtype: torch.dtype) -> bool: """#### Check if the device supports the dtype #### Args: - `device` (torch.device): The device to check - `dtype` (torch.dtype): The dtype to check support #### Returns: - `bool`: Whether the dtype is supported by the device """ if dtype == torch.float32: return True if is_device_cpu(device): return False if dtype == torch.float16: return True if dtype == torch.bfloat16: return True return False def device_supports_non_blocking(device: torch.device) -> bool: """#### Check if the device supports non-blocking #### Args: - `device` (torch.device): The device to check #### Returns: - `bool`: Whether the device supports non-blocking """ if is_device_mps(device): return False # pytorch bug? mps doesn't support non blocking return True def supports_cast(device: torch.device, dtype: torch.dtype): # TODO """#### Check if the device supports casting #### Args: - `device`: The device - `dtype`: The dtype #### Returns: - `bool`: Whether the device supports casting """ if dtype == torch.float32: return True if dtype == torch.float16: return True if directml_enabled: return False if dtype == torch.bfloat16: return True if is_device_mps(device): return False if dtype == torch.float8_e4m3fn: return True if dtype == torch.float8_e5m2: return True return False def cast_to_device(tensor: torch.Tensor, device: torch.device, dtype: torch.dtype, copy: bool = False) -> torch.Tensor: """#### Cast a tensor to a device #### Args: - `tensor` (torch.Tensor): The tensor to cast - `device` (torch.device): The device to cast the tensor to - `dtype` (torch.dtype): The dtype precision to cast to - `copy` (bool, optional): Whether to copy the tensor. Defaults to False. #### Returns: - `torch.Tensor`: The tensor cast to the device """ device_supports_cast = False if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: device_supports_cast = True elif tensor.dtype == torch.bfloat16: if hasattr(device, "type") and device.type.startswith("cuda"): device_supports_cast = True elif is_intel_xpu(): device_supports_cast = True non_blocking = device_supports_non_blocking(device) if device_supports_cast: if copy: if tensor.device == device: return tensor.to(dtype, copy=copy, non_blocking=non_blocking) return tensor.to(device, copy=copy, non_blocking=non_blocking).to( dtype, non_blocking=non_blocking ) else: return tensor.to(device, non_blocking=non_blocking).to( dtype, non_blocking=non_blocking ) else: return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) def pick_weight_dtype(dtype: torch.dtype, fallback_dtype: torch.dtype, device: torch.device) -> torch.dtype: """#### Pick the weight dtype #### Args: - `dtype`: The dtype - `fallback_dtype`: The fallback dtype - `device`: The device #### Returns: - `torch.dtype`: The weight dtype """ if dtype is None: dtype = fallback_dtype elif dtype_size(dtype) > dtype_size(fallback_dtype): dtype = fallback_dtype if not supports_cast(device, dtype): dtype = fallback_dtype return dtype def xformers_enabled() -> bool: """#### Check if xformers is enabled #### Returns: - `bool`: Whether xformers is enabled """ global directml_enabled global cpu_state if cpu_state != CPUState.GPU: return False if is_intel_xpu(): return False if directml_enabled: return False return XFORMERS_IS_AVAILABLE def xformers_enabled_vae() -> bool: """#### Check if xformers is enabled for VAE #### Returns: - `bool`: Whether xformers is enabled for VAE """ enabled = xformers_enabled() if not enabled: return False return XFORMERS_ENABLED_VAE def pytorch_attention_enabled() -> bool: """#### Check if PyTorch attention is enabled #### Returns: - `bool`: Whether PyTorch attention is enabled """ global ENABLE_PYTORCH_ATTENTION return ENABLE_PYTORCH_ATTENTION def pytorch_attention_flash_attention() -> bool: """#### Check if PyTorch flash attention is enabled and supported. #### Returns: - `bool`: True if PyTorch flash attention is enabled and supported, False otherwise. """ global ENABLE_PYTORCH_ATTENTION if ENABLE_PYTORCH_ATTENTION: if is_nvidia(): # pytorch flash attention only works on Nvidia return True return False def get_free_memory(dev: torch.device = None, torch_free_too: bool = False) -> Union[int, Tuple[int, int]]: """#### Get the free memory available on the device. #### Args: - `dev` (torch.device, optional): The device to check memory for. Defaults to None. - `torch_free_too` (bool, optional): Whether to return both total and torch free memory. Defaults to False. #### Returns: - `int` or `Tuple[int, int]`: The free memory available. If `torch_free_too` is True, returns a tuple of total and torch free memory. """ global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, "type") and (dev.type == "cpu" or dev.type == "mps"): mem_free_total = psutil.virtual_memory().available mem_free_torch = mem_free_total else: if directml_enabled: mem_free_total = 1024 * 1024 * 1024 mem_free_torch = mem_free_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) mem_active = stats["active_bytes.all.current"] mem_reserved = stats["reserved_bytes.all.current"] mem_free_torch = mem_reserved - mem_active mem_free_xpu = ( torch.xpu.get_device_properties(dev).total_memory - mem_reserved ) mem_free_total = mem_free_xpu + mem_free_torch else: stats = torch.cuda.memory_stats(dev) mem_active = stats["active_bytes.all.current"] mem_reserved = stats["reserved_bytes.all.current"] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch if torch_free_too: return (mem_free_total, mem_free_torch) else: return mem_free_total def cpu_mode() -> bool: """#### Check if the current mode is CPU. #### Returns: - `bool`: True if the current mode is CPU, False otherwise. """ global cpu_state return cpu_state == CPUState.CPU def mps_mode() -> bool: """#### Check if the current mode is MPS. #### Returns: - `bool`: True if the current mode is MPS, False otherwise. """ global cpu_state return cpu_state == CPUState.MPS def is_device_type(device: torch.device, type: str) -> bool: """#### Check if the device is of a specific type. #### Args: - `device` (torch.device): The device to check. - `type` (str): The type to check for. #### Returns: - `bool`: True if the device is of the specified type, False otherwise. """ if hasattr(device, "type"): if device.type == type: return True return False def is_device_cpu(device: torch.device) -> bool: """#### Check if the device is a CPU. #### Args: - `device` (torch.device): The device to check. #### Returns: - `bool`: True if the device is a CPU, False otherwise. """ return is_device_type(device, "cpu") def is_device_mps(device: torch.device) -> bool: """#### Check if the device is an MPS. #### Args: - `device` (torch.device): The device to check. #### Returns: - `bool`: True if the device is an MPS, False otherwise. """ return is_device_type(device, "mps") def is_device_cuda(device: torch.device) -> bool: """#### Check if the device is a CUDA device. #### Args: - `device` (torch.device): The device to check. #### Returns: - `bool`: True if the device is a CUDA device, False otherwise. """ return is_device_type(device, "cuda") def should_use_fp16( device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False ) -> bool: """#### Determine if FP16 should be used. #### Args: - `device` (torch.device, optional): The device to check. Defaults to None. - `model_params` (int, optional): The number of model parameters. Defaults to 0. - `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True. - `manual_cast` (bool, optional): Whether to manually cast. Defaults to False. #### Returns: - `bool`: True if FP16 should be used, False otherwise. """ global directml_enabled if device is not None: if is_device_cpu(device): return False if FORCE_FP16: return True if device is not None: if is_device_mps(device): return True if FORCE_FP32: return False if directml_enabled: return False if mps_mode(): return True if cpu_mode(): return False if is_intel_xpu(): return True if torch.version.hip: return True if torch.cuda.is_available(): props = torch.cuda.get_device_properties("cuda") else: return False if props.major >= 8: return True if props.major < 6: return False fp16_works = False nvidia_10_series = [ "1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4", ] for x in nvidia_10_series: if x in props.name.lower(): fp16_works = True if fp16_works or manual_cast: free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory() if (not prioritize_performance) or model_params * 4 > free_model_memory: return True if props.major < 7: return False nvidia_16_series = [ "1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200", ] for x in nvidia_16_series: if x in props.name: return False return True def should_use_bf16( device: torch.device = None, model_params: int = 0, prioritize_performance: bool = True, manual_cast: bool = False ) -> bool: """#### Determine if BF16 should be used. #### Args: - `device` (torch.device, optional): The device to check. Defaults to None. - `model_params` (int, optional): The number of model parameters. Defaults to 0. - `prioritize_performance` (bool, optional): Whether to prioritize performance. Defaults to True. - `manual_cast` (bool, optional): Whether to manually cast. Defaults to False. #### Returns: - `bool`: True if BF16 should be used, False otherwise. """ if device is not None: if is_device_cpu(device): return False if device is not None: if is_device_mps(device): return False if FORCE_FP32: return False if directml_enabled: return False if cpu_mode() or mps_mode(): return False if is_intel_xpu(): return True if device is None: device = torch.device("cuda") props = torch.cuda.get_device_properties(device) if props.major >= 8: return True bf16_works = torch.cuda.is_bf16_supported() if bf16_works or manual_cast: free_model_memory = get_free_memory() * 0.9 - minimum_inference_memory() if (not prioritize_performance) or model_params * 4 > free_model_memory: return True return False def soft_empty_cache(force: bool = False) -> None: """#### Softly empty the cache. #### Args: - `force` (bool, optional): Whether to force emptying the cache. Defaults to False. """ global cpu_state if cpu_state == CPUState.MPS: torch.mps.empty_cache() elif is_intel_xpu(): torch.xpu.empty_cache() elif torch.cuda.is_available(): if ( force or is_nvidia() ): # This seems to make things worse on ROCm so I only do it for cuda torch.cuda.empty_cache() torch.cuda.ipc_collect() def unload_all_models() -> None: """#### Unload all models.""" free_memory(1e30, get_torch_device()) def resolve_lowvram_weight(weight: torch.Tensor, model: torch.nn.Module, key: str) -> torch.Tensor: """#### Resolve low VRAM weight. #### Args: - `weight` (torch.Tensor): The weight tensor. - `model` (torch.nn.Module): The model. - `key` (str): The key. #### Returns: - `torch.Tensor`: The resolved weight tensor. """ return weight