Spaces:
Running
on
Zero
Running
on
Zero
import threading | |
import torch | |
from tqdm.auto import trange | |
from modules.Utilities import util | |
from modules.sample import sampling_util | |
disable_gui = False | |
def sample_euler_ancestral( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
eta=1.0, | |
s_noise=1.0, | |
noise_sampler=None, | |
pipeline=False, | |
): | |
# Pre-calculate common values | |
device = x.device | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
# Pre-allocate tensors and init noise sampler | |
s_in = torch.ones((x.shape[0],), device=device) | |
noise_sampler = ( | |
sampling_util.default_noise_sampler(x) | |
if noise_sampler is None | |
else noise_sampler | |
) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / (len(sigmas) - 1)) | |
# Combined model inference and step calculation | |
denoised = model(x, sigmas[i] * s_in, **(extra_args or {})) | |
sigma_down, sigma_up = sampling_util.get_ancestral_step( | |
sigmas[i], sigmas[i + 1], eta=eta | |
) | |
# Fused update step | |
x = x + util.to_d(x, sigmas[i], denoised) * (sigma_down - sigmas[i]) | |
if sigmas[i + 1] > 0: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up | |
if callback is not None: | |
callback({"x": x, "i": i, "sigma": sigmas[i], "denoised": denoised}) | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x,)).start() | |
return x | |
def sample_euler( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
s_churn=0.0, | |
s_tmin=0.0, | |
s_tmax=float("inf"), | |
s_noise=1.0, | |
pipeline=False, | |
): | |
# Pre-calculate common values | |
device = x.device | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
# Pre-allocate tensors and cache parameters | |
s_in = torch.ones((x.shape[0],), device=device) | |
gamma_max = min(s_churn / (len(sigmas) - 1), 2**0.5 - 1) if s_churn > 0 else 0 | |
for i in trange(len(sigmas) - 1, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / (len(sigmas) - 1)) | |
# Combined sigma calculation and update | |
sigma_hat = ( | |
sigmas[i] * (1 + (gamma_max if s_tmin <= sigmas[i] <= s_tmax else 0)) | |
if gamma_max > 0 | |
else sigmas[i] | |
) | |
if gamma_max > 0 and sigma_hat > sigmas[i]: | |
x = ( | |
x | |
+ torch.randn_like(x) * s_noise * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5 | |
) | |
# Fused model inference and update step | |
denoised = model(x, sigma_hat * s_in, **(extra_args or {})) | |
x = x + util.to_d(x, sigma_hat, denoised) * (sigmas[i + 1] - sigma_hat) | |
if callback is not None: | |
callback( | |
{ | |
"x": x, | |
"i": i, | |
"sigma": sigmas[i], | |
"sigma_hat": sigma_hat, | |
"denoised": denoised, | |
} | |
) | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x, True)).start() | |
return x | |
class Rescaler: | |
def __init__(self, model, x, mode, **extra_args): | |
self.model = model | |
self.x = x | |
self.mode = mode | |
self.extra_args = extra_args | |
self.latent_image, self.noise = model.latent_image, model.noise | |
self.denoise_mask = self.extra_args.get("denoise_mask", None) | |
def __enter__(self): | |
if self.latent_image is not None: | |
self.model.latent_image = torch.nn.functional.interpolate( | |
input=self.latent_image, size=self.x.shape[2:4], mode=self.mode | |
) | |
if self.noise is not None: | |
self.model.noise = torch.nn.functional.interpolate( | |
input=self.latent_image, size=self.x.shape[2:4], mode=self.mode | |
) | |
if self.denoise_mask is not None: | |
self.extra_args["denoise_mask"] = torch.nn.functional.interpolate( | |
input=self.denoise_mask, size=self.x.shape[2:4], mode=self.mode | |
) | |
return self | |
def __exit__(self, type, value, traceback): | |
del self.model.latent_image, self.model.noise | |
self.model.latent_image, self.model.noise = self.latent_image, self.noise | |
def dy_sampling_step_cfg_pp( | |
x, | |
model, | |
sigma_next, | |
i, | |
sigma, | |
sigma_hat, | |
callback, | |
current_cfg=7.5, | |
cfg_x0_scale=1.0, | |
**extra_args, | |
): | |
"""Dynamic sampling step with proper CFG++ handling""" | |
# Track both conditional and unconditional denoised outputs | |
uncond_denoised = None | |
old_uncond_denoised = None | |
def post_cfg_function(args): | |
nonlocal uncond_denoised | |
uncond_denoised = args["uncond_denoised"] | |
return args["denoised"] | |
model_options = extra_args.get("model_options", {}).copy() | |
extra_args["model_options"] = set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=True | |
) | |
# Process image in lower resolution | |
original_shape = x.shape | |
batch_size, channels, m, n = ( | |
original_shape[0], | |
original_shape[1], | |
original_shape[2] // 2, | |
original_shape[3] // 2, | |
) | |
extra_row = x.shape[2] % 2 == 1 | |
extra_col = x.shape[3] % 2 == 1 | |
if extra_row: | |
extra_row_content = x[:, :, -1:, :] | |
x = x[:, :, :-1, :] | |
if extra_col: | |
extra_col_content = x[:, :, :, -1:] | |
x = x[:, :, :, :-1] | |
a_list = ( | |
x.unfold(2, 2, 2) | |
.unfold(3, 2, 2) | |
.contiguous() | |
.view(batch_size, channels, m * n, 2, 2) | |
) | |
c = a_list[:, :, :, 1, 1].view(batch_size, channels, m, n) | |
with Rescaler(model, c, "nearest-exact", **extra_args) as rescaler: | |
denoised = model(c, sigma_hat * c.new_ones([c.shape[0]]), **rescaler.extra_args) | |
if callback is not None: | |
callback( | |
{ | |
"x": c, | |
"i": i, | |
"sigma": sigma, | |
"sigma_hat": sigma_hat, | |
"denoised": denoised, | |
} | |
) | |
# Apply proper CFG++ calculation | |
if old_uncond_denoised is None: | |
# First step - regular CFG | |
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg | |
else: | |
# CFG++ with momentum | |
momentum = denoised | |
uncond_momentum = uncond_denoised | |
x0_coeff = cfg_x0_scale * current_cfg | |
# Combined CFG++ update | |
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff | |
# Apply proper noise prediction and update | |
d = util.to_d(c, sigma_hat, cfg_denoised) | |
c = c + d * (sigma_next - sigma_hat) | |
# Store updated pixels back in the original tensor | |
d_list = c.view(batch_size, channels, m * n, 1, 1) | |
a_list[:, :, :, 1, 1] = d_list[:, :, :, 0, 0] | |
x = ( | |
a_list.view(batch_size, channels, m, n, 2, 2) | |
.permute(0, 1, 2, 4, 3, 5) | |
.reshape(batch_size, channels, 2 * m, 2 * n) | |
) | |
if extra_row or extra_col: | |
x_expanded = torch.zeros(original_shape, dtype=x.dtype, device=x.device) | |
x_expanded[:, :, : 2 * m, : 2 * n] = x | |
if extra_row: | |
x_expanded[:, :, -1:, : 2 * n + 1] = extra_row_content | |
if extra_col: | |
x_expanded[:, :, : 2 * m, -1:] = extra_col_content | |
if extra_row and extra_col: | |
x_expanded[:, :, -1:, -1:] = extra_col_content[:, :, -1:, :] | |
x = x_expanded | |
return x | |
def sample_euler_dy_cfg_pp( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
s_churn=0.0, | |
s_tmin=0.0, | |
s_tmax=float("inf"), | |
s_noise=1.0, | |
s_gamma_start=0.0, | |
s_gamma_end=0.0, | |
s_extra_steps=True, | |
pipeline=False, | |
# CFG++ parameters | |
cfg_scale=7.5, | |
cfg_x0_scale=1.0, | |
cfg_s_scale=1.0, | |
cfg_min=1.0, | |
**kwargs, | |
): | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
gamma_start = ( | |
round(s_gamma_start) | |
if s_gamma_start > 1.0 | |
else (len(sigmas) - 1) * s_gamma_start | |
) | |
gamma_end = ( | |
round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end | |
) | |
n_steps = len(sigmas) - 1 | |
# CFG++ scheduling | |
def get_cfg_scale(step): | |
# Linear scheduling from cfg_scale to cfg_min | |
progress = step / n_steps | |
return cfg_scale + (cfg_min - cfg_scale) * progress | |
old_uncond_denoised = None | |
def post_cfg_function(args): | |
nonlocal old_uncond_denoised | |
old_uncond_denoised = args["uncond_denoised"] | |
return args["denoised"] | |
model_options = extra_args.get("model_options", {}).copy() | |
extra_args["model_options"] = set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=True | |
) | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
for i in trange(len(sigmas) - 1, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / (len(sigmas) - 1)) | |
# Get current CFG scale | |
current_cfg = get_cfg_scale(i) | |
gamma = ( | |
max(s_churn / (len(sigmas) - 1), 2**0.5 - 1) | |
if gamma_start <= i < gamma_end and s_tmin <= sigmas[i] <= s_tmax | |
else 0.0 | |
) | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
eps = torch.randn_like(x) * s_noise | |
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
uncond_denoised = extra_args.get("model_options", {}).get( | |
"sampler_post_cfg_function", [] | |
)[-1]({"denoised": denoised, "uncond_denoised": None}) | |
if callback is not None: | |
callback( | |
{ | |
"x": x, | |
"i": i, | |
"sigma": sigmas[i], | |
"sigma_hat": sigma_hat, | |
"denoised": denoised, | |
"cfg_scale": current_cfg, | |
} | |
) | |
# CFG++ calculation | |
if old_uncond_denoised is None: | |
# First step - regular CFG | |
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg | |
else: | |
# CFG++ with momentum | |
x0_coeff = cfg_x0_scale * current_cfg | |
# Simple momentum for Euler | |
momentum = denoised | |
uncond_momentum = uncond_denoised | |
# Combined CFG++ update | |
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff | |
# Euler method with CFG++ denoised result | |
d = util.to_d(x, sigma_hat, cfg_denoised) | |
x = x + d * (sigmas[i + 1] - sigma_hat) | |
# Store for momentum calculation | |
old_uncond_denoised = uncond_denoised | |
# Extra dynamic steps - pass the current CFG scale and predictions | |
if sigmas[i + 1] > 0 and s_extra_steps: | |
if i // 2 == 1: | |
x = dy_sampling_step_cfg_pp( | |
x, | |
model, | |
sigmas[i + 1], | |
i, | |
sigmas[i], | |
sigma_hat, | |
callback, | |
current_cfg=current_cfg, # Pass current CFG scale | |
cfg_x0_scale=cfg_x0_scale, # Pass CFG++ x0 coefficient | |
**extra_args, | |
) | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x,)).start() | |
return x | |
def sample_euler_ancestral_dy_cfg_pp( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
eta=1.0, | |
s_noise=1.0, | |
noise_sampler=None, | |
s_gamma_start=0.0, | |
s_gamma_end=0.0, | |
pipeline=False, | |
# CFG++ parameters | |
cfg_scale=7.5, | |
cfg_x0_scale=1.0, | |
cfg_s_scale=1.0, | |
cfg_min=1.0, | |
**kwargs, | |
): | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = ( | |
sampling_util.default_noise_sampler(x) | |
if noise_sampler is None | |
else noise_sampler | |
) | |
gamma_start = ( | |
round(s_gamma_start) | |
if s_gamma_start > 1.0 | |
else (len(sigmas) - 1) * s_gamma_start | |
) | |
gamma_end = ( | |
round(s_gamma_end) if s_gamma_end > 1.0 else (len(sigmas) - 1) * s_gamma_end | |
) | |
n_steps = len(sigmas) - 1 | |
# CFG++ scheduling | |
def get_cfg_scale(step): | |
# Linear scheduling from cfg_scale to cfg_min | |
progress = step / n_steps | |
return cfg_scale + (cfg_min - cfg_scale) * progress | |
old_uncond_denoised = None | |
def post_cfg_function(args): | |
nonlocal old_uncond_denoised | |
old_uncond_denoised = args["uncond_denoised"] | |
return args["denoised"] | |
model_options = extra_args.get("model_options", {}).copy() | |
extra_args["model_options"] = set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=True | |
) | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / (len(sigmas) - 1)) | |
# Get current CFG scale | |
current_cfg = get_cfg_scale(i) | |
gamma = 2**0.5 - 1 if gamma_start <= i < gamma_end else 0.0 | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
eps = torch.randn_like(x) * s_noise | |
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
uncond_denoised = extra_args.get("model_options", {}).get( | |
"sampler_post_cfg_function", [] | |
)[-1]({"denoised": denoised, "uncond_denoised": None}) | |
sigma_down, sigma_up = sampling_util.get_ancestral_step( | |
sigmas[i], sigmas[i + 1], eta=eta | |
) | |
if callback is not None: | |
callback( | |
{ | |
"x": x, | |
"i": i, | |
"sigma": sigmas[i], | |
"sigma_hat": sigma_hat, | |
"denoised": denoised, | |
"cfg_scale": current_cfg, | |
} | |
) | |
# CFG++ calculation | |
if old_uncond_denoised is None or sigmas[i + 1] == 0: | |
# First step or last step - regular CFG | |
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg | |
else: | |
# CFG++ with momentum | |
x0_coeff = cfg_x0_scale * current_cfg | |
# Simple momentum for Euler Ancestral | |
momentum = denoised | |
uncond_momentum = uncond_denoised | |
# Combined CFG++ update | |
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff | |
# Euler ancestral method with CFG++ denoised result | |
d = util.to_d(x, sigma_hat, cfg_denoised) | |
x = x + d * (sigma_down - sigma_hat) | |
if sigmas[i + 1] > 0: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up | |
# Store for momentum calculation | |
old_uncond_denoised = uncond_denoised | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x,)).start() | |
return x | |
def set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=False | |
): | |
model_options["sampler_post_cfg_function"] = model_options.get( | |
"sampler_post_cfg_function", [] | |
) + [post_cfg_function] | |
if disable_cfg1_optimization: | |
model_options["disable_cfg1_optimization"] = True | |
return model_options | |
def sample_dpmpp_2m_cfgpp( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
pipeline=False, | |
# CFG++ parameters | |
cfg_scale=7.5, | |
cfg_x0_scale=1.0, | |
cfg_s_scale=1.0, | |
cfg_min=1.0, | |
): | |
"""DPM-Solver++(2M) sampler with CFG++ optimizations""" | |
# Pre-calculate common values and setup | |
device = x.device | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
# Pre-allocate tensors and transform sigmas | |
s_in = torch.ones((x.shape[0],), device=device) | |
t_steps = -torch.log(sigmas) # Fused calculation | |
n_steps = len(sigmas) - 1 | |
# Pre-calculate all needed values in one go | |
sigma_steps = torch.exp(-t_steps) # Fused calculation | |
ratios = sigma_steps[1:] / sigma_steps[:-1] | |
h_steps = t_steps[1:] - t_steps[:-1] | |
# Pre-calculate CFG schedule for the entire sampling process | |
steps = torch.arange(n_steps, device=device) | |
cfg_values = cfg_scale + (cfg_min - cfg_scale) * (steps / n_steps) | |
old_denoised = None | |
old_uncond_denoised = None | |
extra_args = {} if extra_args is None else extra_args | |
# Define post-CFG function once outside the loop | |
def post_cfg_function(args): | |
nonlocal old_uncond_denoised | |
old_uncond_denoised = args["uncond_denoised"] | |
return args["denoised"] | |
model_options = extra_args.get("model_options", {}).copy() | |
extra_args["model_options"] = set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=True | |
) | |
for i in trange(n_steps, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / n_steps) | |
# Use pre-calculated CFG scale | |
current_cfg = cfg_values[i] | |
# Fused model inference and update calculations | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
uncond_denoised = extra_args.get("model_options", {}).get( | |
"sampler_post_cfg_function", [] | |
)[-1]({"denoised": denoised, "uncond_denoised": None}) | |
if callback is not None: | |
callback( | |
{ | |
"x": x, | |
"i": i, | |
"sigma": sigmas[i], | |
"sigma_hat": sigmas[i], | |
"denoised": denoised, | |
"cfg_scale": current_cfg, | |
} | |
) | |
# CFG++ update step using optimized operations | |
if old_uncond_denoised is None or sigmas[i + 1] == 0: | |
# First step or last step - use torch.lerp for efficient interpolation | |
cfg_denoised = torch.lerp(uncond_denoised, denoised, current_cfg) | |
else: | |
# Fused momentum calculations | |
h_ratio = h_steps[i - 1] / (2 * h_steps[i]) | |
h_ratio_plus_1 = 1 + h_ratio | |
# Use fused multiply-add operations for momentum terms | |
momentum = torch.addcmul(denoised * h_ratio_plus_1, old_denoised, -h_ratio) | |
uncond_momentum = torch.addcmul( | |
uncond_denoised * h_ratio_plus_1, old_uncond_denoised, -h_ratio | |
) | |
# Optimized interpolation for CFG++ update | |
cfg_denoised = torch.lerp( | |
uncond_momentum, momentum, current_cfg * cfg_x0_scale | |
) | |
# Apply update with pre-calculated expm1 | |
h_expm1 = torch.expm1(-h_steps[i]) | |
x = ratios[i] * x - h_expm1 * cfg_denoised | |
old_denoised = denoised | |
old_uncond_denoised = uncond_denoised | |
# Preview updates | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x,)).start() | |
return x | |
def sample_dpmpp_sde_cfgpp( | |
model, | |
x, | |
sigmas, | |
extra_args=None, | |
callback=None, | |
disable=None, | |
eta=1.0, | |
s_noise=1.0, | |
noise_sampler=None, | |
r=1 / 2, | |
pipeline=False, | |
seed=None, | |
# CFG++ parameters | |
cfg_scale=7.5, | |
cfg_x0_scale=1.0, | |
cfg_s_scale=1.0, | |
cfg_min=1.0, | |
): | |
"""DPM-Solver++ (SDE) with CFG++ optimizations""" | |
# Pre-calculate common values | |
device = x.device | |
global disable_gui | |
disable_gui = pipeline | |
if not disable_gui: | |
from modules.AutoEncoders import taesd | |
from modules.user import app_instance | |
# Early return check | |
if len(sigmas) <= 1: | |
return x | |
# Pre-allocate tensors and values | |
s_in = torch.ones((x.shape[0],), device=device) | |
n_steps = len(sigmas) - 1 | |
extra_args = {} if extra_args is None else extra_args | |
# CFG++ scheduling | |
def get_cfg_scale(step): | |
progress = step / n_steps | |
return cfg_scale + (cfg_min - cfg_scale) * progress | |
# Helper functions | |
def sigma_fn(t): | |
return (-t).exp() | |
def t_fn(sigma): | |
return -sigma.log() | |
# Initialize noise sampler | |
if noise_sampler is None: | |
noise_sampler = sampling_util.BrownianTreeNoiseSampler( | |
x, sigmas[sigmas > 0].min(), sigmas.max(), seed=seed, cpu=True | |
) | |
# Track previous predictions | |
old_denoised = None | |
old_uncond_denoised = None | |
def post_cfg_function(args): | |
nonlocal old_uncond_denoised | |
old_uncond_denoised = args["uncond_denoised"] | |
return args["denoised"] | |
model_options = extra_args.get("model_options", {}).copy() | |
extra_args["model_options"] = set_model_options_post_cfg_function( | |
model_options, post_cfg_function, disable_cfg1_optimization=True | |
) | |
for i in trange(n_steps, disable=disable): | |
if ( | |
not pipeline | |
and hasattr(app_instance.app, "interrupt_flag") | |
and app_instance.app.interrupt_flag | |
): | |
return x | |
if not pipeline: | |
app_instance.app.progress.set(i / n_steps) | |
# Get current CFG scale | |
current_cfg = get_cfg_scale(i) | |
# Model inference | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
uncond_denoised = extra_args.get("model_options", {}).get( | |
"sampler_post_cfg_function", [] | |
)[-1]({"denoised": denoised, "uncond_denoised": None}) | |
if callback is not None: | |
callback( | |
{ | |
"x": x, | |
"i": i, | |
"sigma": sigmas[i], | |
"denoised": denoised, | |
"cfg_scale": current_cfg, | |
} | |
) | |
if sigmas[i + 1] == 0: | |
# Final step - regular CFG | |
cfg_denoised = uncond_denoised + (denoised - uncond_denoised) * current_cfg | |
x = x + util.to_d(x, sigmas[i], cfg_denoised) * (sigmas[i + 1] - sigmas[i]) | |
else: | |
# Two-step update with CFG++ | |
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) | |
s = t + (t_next - t) * r | |
# Step 1 with CFG++ | |
sd, su = sampling_util.get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) | |
s_ = t_fn(sd) | |
if old_uncond_denoised is None: | |
# First step - regular CFG | |
cfg_denoised = ( | |
uncond_denoised + (denoised - uncond_denoised) * current_cfg | |
) | |
else: | |
# CFG++ with momentum | |
x0_coeff = cfg_x0_scale * current_cfg | |
# Calculate momentum terms | |
h_ratio = (t - s_) / (2 * (t - t_next)) | |
momentum = (1 + h_ratio) * denoised - h_ratio * old_denoised | |
uncond_momentum = ( | |
1 + h_ratio | |
) * uncond_denoised - h_ratio * old_uncond_denoised | |
# Combine with CFG++ scaling | |
cfg_denoised = uncond_momentum + (momentum - uncond_momentum) * x0_coeff | |
x_2 = ( | |
(sigma_fn(s_) / sigma_fn(t)) * x | |
- (t - s_).expm1() * cfg_denoised | |
+ noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su | |
) | |
# Step 2 inference | |
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) | |
uncond_denoised_2 = extra_args.get("model_options", {}).get( | |
"sampler_post_cfg_function", [] | |
)[-1]({"denoised": denoised_2, "uncond_denoised": None}) | |
# Step 2 CFG++ combination | |
if old_uncond_denoised is None: | |
cfg_denoised_2 = ( | |
uncond_denoised_2 + (denoised_2 - uncond_denoised_2) * current_cfg | |
) | |
else: | |
momentum_2 = (1 + h_ratio) * denoised_2 - h_ratio * denoised | |
uncond_momentum_2 = ( | |
1 + h_ratio | |
) * uncond_denoised_2 - h_ratio * uncond_denoised | |
cfg_denoised_2 = ( | |
uncond_momentum_2 + (momentum_2 - uncond_momentum_2) * x0_coeff | |
) | |
# Final ancestral step | |
sd, su = sampling_util.get_ancestral_step( | |
sigma_fn(t), sigma_fn(t_next), eta | |
) | |
t_next_ = t_fn(sd) | |
# Combined update with both predictions | |
x = ( | |
(sigma_fn(t_next_) / sigma_fn(t)) * x | |
- (t - t_next_).expm1() | |
* ((1 - 1 / (2 * r)) * cfg_denoised + (1 / (2 * r)) * cfg_denoised_2) | |
+ noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su | |
) | |
old_denoised = denoised | |
old_uncond_denoised = uncond_denoised | |
# Preview updates | |
if not pipeline and app_instance.app.previewer_var.get() and i % 5 == 0: | |
threading.Thread(target=taesd.taesd_preview, args=(x,)).start() | |
return x | |