Spaces:
Running
on
Zero
Running
on
Zero
# Taken and adapted from https://github.com/SuperBeastsAI/ComfyUI-SuperBeasts | |
import numpy as np | |
from PIL import Image, ImageOps, ImageDraw, ImageFilter, ImageEnhance, ImageCms | |
from PIL.PngImagePlugin import PngInfo | |
import torch | |
import torch.nn.functional as F | |
import json | |
import random | |
sRGB_profile = ImageCms.createProfile("sRGB") | |
Lab_profile = ImageCms.createProfile("LAB") | |
# Tensor to PIL | |
def tensor2pil(image): | |
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) | |
# PIL to Tensor | |
def pil2tensor(image): | |
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) | |
def adjust_shadows_non_linear(luminance, shadow_intensity, max_shadow_adjustment=1.5): | |
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize | |
# Apply a non-linear darkening effect based on shadow_intensity | |
shadows = lum_array ** (1 / (1 + shadow_intensity * max_shadow_adjustment)) | |
return np.clip(shadows * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255] | |
def adjust_highlights_non_linear(luminance, highlight_intensity, max_highlight_adjustment=1.5): | |
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize | |
# Brighten highlights more aggressively based on highlight_intensity | |
highlights = 1 - (1 - lum_array) ** (1 + highlight_intensity * max_highlight_adjustment) | |
return np.clip(highlights * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255] | |
def merge_adjustments_with_blend_modes(luminance, shadows, highlights, hdr_intensity, shadow_intensity, highlight_intensity): | |
# Ensure the data is in the correct format for processing | |
base = np.array(luminance, dtype=np.float32) | |
# Scale the adjustments based on hdr_intensity | |
scaled_shadow_intensity = shadow_intensity ** 2 * hdr_intensity | |
scaled_highlight_intensity = highlight_intensity ** 2 * hdr_intensity | |
# Create luminance-based masks for shadows and highlights | |
shadow_mask = np.clip((1 - (base / 255)) ** 2, 0, 1) | |
highlight_mask = np.clip((base / 255) ** 2, 0, 1) | |
# Apply the adjustments using the masks | |
adjusted_shadows = np.clip(base * (1 - shadow_mask * scaled_shadow_intensity), 0, 255) | |
adjusted_highlights = np.clip(base + (255 - base) * highlight_mask * scaled_highlight_intensity, 0, 255) | |
# Combine the adjusted shadows and highlights | |
adjusted_luminance = np.clip(adjusted_shadows + adjusted_highlights - base, 0, 255) | |
# Blend the adjusted luminance with the original luminance based on hdr_intensity | |
final_luminance = np.clip(base * (1 - hdr_intensity) + adjusted_luminance * hdr_intensity, 0, 255).astype(np.uint8) | |
return Image.fromarray(final_luminance) | |
def apply_gamma_correction(lum_array, gamma): | |
""" | |
Apply gamma correction to the luminance array. | |
:param lum_array: Luminance channel as a NumPy array. | |
:param gamma: Gamma value for correction. | |
""" | |
if gamma == 0: | |
return np.clip(lum_array, 0, 255).astype(np.uint8) | |
epsilon = 1e-7 # Small value to avoid dividing by zero | |
gamma_corrected = 1 / (1.1 - gamma) | |
adjusted = 255 * ((lum_array / 255) ** gamma_corrected) | |
return np.clip(adjusted, 0, 255).astype(np.uint8) | |
# create a wrapper function that can apply a function to multiple images in a batch while passing all other arguments to the function | |
def apply_to_batch(func): | |
def wrapper(self, image, *args, **kwargs): | |
images = [] | |
for img in image: | |
images.append(func(self, img, *args, **kwargs)) | |
batch_tensor = torch.cat(images, dim=0) | |
return (batch_tensor, ) | |
return wrapper | |
class HDREffects: | |
def apply_hdr2(self, image, hdr_intensity=0.75, shadow_intensity=0.25, highlight_intensity=0.5, gamma_intensity=0.25, contrast=0.1, enhance_color=0.25): | |
# Load the image | |
img = tensor2pil(image) | |
# Step 1: Convert RGB to LAB for better color preservation | |
img_lab = ImageCms.profileToProfile(img, sRGB_profile, Lab_profile, outputMode='LAB') | |
# Extract L, A, and B channels | |
luminance, a, b = img_lab.split() | |
# Convert luminance to a NumPy array for processing | |
lum_array = np.array(luminance, dtype=np.float32) | |
# Preparing adjustment layers (shadows, midtones, highlights) | |
# This example assumes you have methods to extract or calculate these adjustments | |
shadows_adjusted = adjust_shadows_non_linear(luminance, shadow_intensity) | |
highlights_adjusted = adjust_highlights_non_linear(luminance, highlight_intensity) | |
merged_adjustments = merge_adjustments_with_blend_modes(lum_array, shadows_adjusted, highlights_adjusted, hdr_intensity, shadow_intensity, highlight_intensity) | |
# Apply gamma correction with a base_gamma value (define based on desired effect) | |
gamma_corrected = apply_gamma_correction(np.array(merged_adjustments), gamma_intensity) | |
gamma_corrected = Image.fromarray(gamma_corrected).resize(a.size) | |
# Merge L channel back with original A and B channels | |
adjusted_lab = Image.merge('LAB', (gamma_corrected, a, b)) | |
# Step 3: Convert LAB back to RGB | |
img_adjusted = ImageCms.profileToProfile(adjusted_lab, Lab_profile, sRGB_profile, outputMode='RGB') | |
# Enhance contrast | |
enhancer = ImageEnhance.Contrast(img_adjusted) | |
contrast_adjusted = enhancer.enhance(1 + contrast) | |
# Enhance color saturation | |
enhancer = ImageEnhance.Color(contrast_adjusted) | |
color_adjusted = enhancer.enhance(1 + enhance_color * 0.2) | |
return pil2tensor(color_adjusted) |