Aatricks's picture
Upload folder using huggingface_hub
d9a2e19 verified
# Taken and adapted from https://github.com/SuperBeastsAI/ComfyUI-SuperBeasts
import numpy as np
from PIL import Image, ImageOps, ImageDraw, ImageFilter, ImageEnhance, ImageCms
from PIL.PngImagePlugin import PngInfo
import torch
import torch.nn.functional as F
import json
import random
sRGB_profile = ImageCms.createProfile("sRGB")
Lab_profile = ImageCms.createProfile("LAB")
# Tensor to PIL
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def adjust_shadows_non_linear(luminance, shadow_intensity, max_shadow_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Apply a non-linear darkening effect based on shadow_intensity
shadows = lum_array ** (1 / (1 + shadow_intensity * max_shadow_adjustment))
return np.clip(shadows * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def adjust_highlights_non_linear(luminance, highlight_intensity, max_highlight_adjustment=1.5):
lum_array = np.array(luminance, dtype=np.float32) / 255.0 # Normalize
# Brighten highlights more aggressively based on highlight_intensity
highlights = 1 - (1 - lum_array) ** (1 + highlight_intensity * max_highlight_adjustment)
return np.clip(highlights * 255, 0, 255).astype(np.uint8) # Re-scale to [0, 255]
def merge_adjustments_with_blend_modes(luminance, shadows, highlights, hdr_intensity, shadow_intensity, highlight_intensity):
# Ensure the data is in the correct format for processing
base = np.array(luminance, dtype=np.float32)
# Scale the adjustments based on hdr_intensity
scaled_shadow_intensity = shadow_intensity ** 2 * hdr_intensity
scaled_highlight_intensity = highlight_intensity ** 2 * hdr_intensity
# Create luminance-based masks for shadows and highlights
shadow_mask = np.clip((1 - (base / 255)) ** 2, 0, 1)
highlight_mask = np.clip((base / 255) ** 2, 0, 1)
# Apply the adjustments using the masks
adjusted_shadows = np.clip(base * (1 - shadow_mask * scaled_shadow_intensity), 0, 255)
adjusted_highlights = np.clip(base + (255 - base) * highlight_mask * scaled_highlight_intensity, 0, 255)
# Combine the adjusted shadows and highlights
adjusted_luminance = np.clip(adjusted_shadows + adjusted_highlights - base, 0, 255)
# Blend the adjusted luminance with the original luminance based on hdr_intensity
final_luminance = np.clip(base * (1 - hdr_intensity) + adjusted_luminance * hdr_intensity, 0, 255).astype(np.uint8)
return Image.fromarray(final_luminance)
def apply_gamma_correction(lum_array, gamma):
"""
Apply gamma correction to the luminance array.
:param lum_array: Luminance channel as a NumPy array.
:param gamma: Gamma value for correction.
"""
if gamma == 0:
return np.clip(lum_array, 0, 255).astype(np.uint8)
epsilon = 1e-7 # Small value to avoid dividing by zero
gamma_corrected = 1 / (1.1 - gamma)
adjusted = 255 * ((lum_array / 255) ** gamma_corrected)
return np.clip(adjusted, 0, 255).astype(np.uint8)
# create a wrapper function that can apply a function to multiple images in a batch while passing all other arguments to the function
def apply_to_batch(func):
def wrapper(self, image, *args, **kwargs):
images = []
for img in image:
images.append(func(self, img, *args, **kwargs))
batch_tensor = torch.cat(images, dim=0)
return (batch_tensor, )
return wrapper
class HDREffects:
@apply_to_batch
def apply_hdr2(self, image, hdr_intensity=0.75, shadow_intensity=0.25, highlight_intensity=0.5, gamma_intensity=0.25, contrast=0.1, enhance_color=0.25):
# Load the image
img = tensor2pil(image)
# Step 1: Convert RGB to LAB for better color preservation
img_lab = ImageCms.profileToProfile(img, sRGB_profile, Lab_profile, outputMode='LAB')
# Extract L, A, and B channels
luminance, a, b = img_lab.split()
# Convert luminance to a NumPy array for processing
lum_array = np.array(luminance, dtype=np.float32)
# Preparing adjustment layers (shadows, midtones, highlights)
# This example assumes you have methods to extract or calculate these adjustments
shadows_adjusted = adjust_shadows_non_linear(luminance, shadow_intensity)
highlights_adjusted = adjust_highlights_non_linear(luminance, highlight_intensity)
merged_adjustments = merge_adjustments_with_blend_modes(lum_array, shadows_adjusted, highlights_adjusted, hdr_intensity, shadow_intensity, highlight_intensity)
# Apply gamma correction with a base_gamma value (define based on desired effect)
gamma_corrected = apply_gamma_correction(np.array(merged_adjustments), gamma_intensity)
gamma_corrected = Image.fromarray(gamma_corrected).resize(a.size)
# Merge L channel back with original A and B channels
adjusted_lab = Image.merge('LAB', (gamma_corrected, a, b))
# Step 3: Convert LAB back to RGB
img_adjusted = ImageCms.profileToProfile(adjusted_lab, Lab_profile, sRGB_profile, outputMode='RGB')
# Enhance contrast
enhancer = ImageEnhance.Contrast(img_adjusted)
contrast_adjusted = enhancer.enhance(1 + contrast)
# Enhance color saturation
enhancer = ImageEnhance.Color(contrast_adjusted)
color_adjusted = enhancer.enhance(1 + enhance_color * 0.2)
return pil2tensor(color_adjusted)