File size: 24,244 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b173bc1
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b173bc1
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b173bc1
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264e6e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264e6e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b173bc1
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b173bc1
d9a2e19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
import argparse
import os
import random
import sys

import numpy as np
import torch
from PIL import Image

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))

from modules.AutoDetailer import SAM, SEGS, ADetailer, bbox
from modules.AutoEncoders import VariationalAE
from modules.clip import Clip
from modules.FileManaging import Downloader, ImageSaver, Loader
from modules.hidiffusion import msw_msa_attention
from modules.Model import LoRas
from modules.Quantize import Quantizer
from modules.sample import sampling
from modules.UltimateSDUpscale import UltimateSDUpscale, USDU_upscaler
from modules.Utilities import Enhancer, Latent, upscale
from modules.WaveSpeed import fbcache_nodes
from modules.AutoHDR import ahdr

with open(os.path.join("./_internal/", "last_seed.txt"), "r") as f:
    last_seed = int(f.read())

Downloader.CheckAndDownload()


def pipeline(

    prompt: str,

    w: int,

    h: int,

    number: int = 1,

    batch: int = 1,

    hires_fix: bool = False,

    adetailer: bool = False,

    enhance_prompt: bool = False,

    img2img: bool = False,

    stable_fast: bool = False,

    reuse_seed: bool = False,

    flux_enabled: bool = False,

    prio_speed: bool = False,

    autohdr: bool = False,

    realistic_model: bool = False,

) -> None:
    """#### Run the LightDiffusion pipeline.



    #### Args:

        - `prompt` (str): The prompt for the pipeline.

        - `w` (int): The width of the generated image.

        - `h` (int): The height of the generated image.

        - `hires_fix` (bool, optional): Enable high-resolution fix. Defaults to False.

        - `adetailer` (bool, optional): Enable automatic face and body enhancing. Defaults to False.

        - `enhance_prompt` (bool, optional): Enable Ollama prompt enhancement. Defaults to False.

        - `img2img` (bool, optional): Use LightDiffusion in Image to Image mode, the prompt input becomes the path to the input image. Defaults to False.

        - `stable_fast` (bool, optional): Enable Stable-Fast speedup offering a 70% speed improvement in return of a compilation time. Defaults to False.

        - `reuse_seed` (bool, optional): Reuse the last used seed, if False the seed will be kept random. Default to False.

        - `flux_enabled` (bool, optional): Enable the flux mode. Defaults to False.

        - `prio_speed` (bool, optional): Prioritize speed over quality. Defaults to False.

        - `autohdr` (bool, optional): Enable the AutoHDR mode. Defaults to False.

        - `realistic_model` (bool, optional): Use the realistic model. Defaults to False.

    """
    global last_seed
    if reuse_seed:
        seed = last_seed

    else:
        seed = random.randint(1, 2**64)
        last_seed = seed
    with open(os.path.join("./_internal/", "last_seed.txt"), "w") as f:
        f.write(str(seed))
    if enhance_prompt:
        try:
            prompt = Enhancer.enhance_prompt(prompt)
        except:
            pass

    sampler_name = "dpmpp_sde_cfgpp" if not prio_speed else "dpmpp_2m_cfgpp"
    ckpt = (
        "./_internal/checkpoints/Meina V10 - baked VAE.safetensors"
        if not realistic_model
        else "./_internal/checkpoints/DreamShaper_8_pruned.safetensors"
    )
    with torch.inference_mode():
        if not flux_enabled:
            checkpointloadersimple = Loader.CheckpointLoaderSimple()
            checkpointloadersimple_241 = checkpointloadersimple.load_checkpoint(
                ckpt_name=ckpt
            )
            hidiffoptimizer = msw_msa_attention.ApplyMSWMSAAttentionSimple()
        cliptextencode = Clip.CLIPTextEncode()
        emptylatentimage = Latent.EmptyLatentImage()
        ksampler_instance = sampling.KSampler()
        vaedecode = VariationalAE.VAEDecode()
        saveimage = ImageSaver.SaveImage()
        latent_upscale = upscale.LatentUpscale()
        hdr = ahdr.HDREffects()
    for _ in range(number):
        if img2img:
            img = Image.open(prompt)
            img_array = np.array(img)
            img_tensor = torch.from_numpy(img_array).float().to("cpu") / 255.0
            img_tensor = img_tensor.unsqueeze(0)
            with torch.inference_mode():
                ultimatesdupscale = UltimateSDUpscale.UltimateSDUpscale()
                try:
                    loraloader = LoRas.LoraLoader()
                    loraloader_274 = loraloader.load_lora(
                        lora_name="add_detail.safetensors",
                        strength_model=2,
                        strength_clip=2,
                        model=checkpointloadersimple_241[0],
                        clip=checkpointloadersimple_241[1],
                    )
                except:
                    loraloader_274 = checkpointloadersimple_241

                if stable_fast is True:
                    from modules.StableFast import StableFast

                    applystablefast = StableFast.ApplyStableFastUnet()
                    applystablefast_158 = applystablefast.apply_stable_fast(
                        enable_cuda_graph=False,
                        model=loraloader_274[0],
                    )
                else:
                    applystablefast_158 = loraloader_274

                clipsetlastlayer = Clip.CLIPSetLastLayer()
                clipsetlastlayer_257 = clipsetlastlayer.set_last_layer(
                    stop_at_clip_layer=-2, clip=loraloader_274[1]
                )

                cliptextencode_242 = cliptextencode.encode(
                    text=prompt,
                    clip=clipsetlastlayer_257[0],
                )
                cliptextencode_243 = cliptextencode.encode(
                    text="(worst quality, low quality:1.4), (zombie, sketch, interlocked fingers, comic), (embedding:EasyNegative), (embedding:badhandv4), (embedding:lr), (embedding:ng_deepnegative_v1_75t)",
                    clip=clipsetlastlayer_257[0],
                )
                upscalemodelloader = USDU_upscaler.UpscaleModelLoader()
                upscalemodelloader_244 = upscalemodelloader.load_model(
                    "RealESRGAN_x4plus.pth"
                )
                ultimatesdupscale_250 = ultimatesdupscale.upscale(
                    upscale_by=2,
                    seed=random.randint(1, 2**64),
                    steps=8,
                    cfg=6,
                    sampler_name=sampler_name,
                    scheduler="karras",
                    denoise=0.3,
                    mode_type="Linear",
                    tile_width=512,
                    tile_height=512,
                    mask_blur=16,
                    tile_padding=32,
                    seam_fix_mode="Half Tile",
                    seam_fix_denoise=0.2,
                    seam_fix_width=64,
                    seam_fix_mask_blur=16,
                    seam_fix_padding=32,
                    force_uniform_tiles="enable",
                    image=img_tensor,
                    model=applystablefast_158[0],
                    positive=cliptextencode_242[0],
                    negative=cliptextencode_243[0],
                    vae=checkpointloadersimple_241[2],
                    upscale_model=upscalemodelloader_244[0],
                    pipeline=True,
                )
                saveimage.save_images(
                    filename_prefix="LD-I2I",
                    images=hdr.apply_hdr2(ultimatesdupscale_250[0])
                    if autohdr
                    else ultimatesdupscale_250[0],
                )
        elif flux_enabled:
            Downloader.CheckAndDownloadFlux()
            with torch.inference_mode():
                dualcliploadergguf = Quantizer.DualCLIPLoaderGGUF()
                emptylatentimage = Latent.EmptyLatentImage()
                vaeloader = VariationalAE.VAELoader()
                unetloadergguf = Quantizer.UnetLoaderGGUF()
                cliptextencodeflux = Quantizer.CLIPTextEncodeFlux()
                conditioningzeroout = Quantizer.ConditioningZeroOut()
                ksampler = sampling.KSampler()
                unetloadergguf_10 = unetloadergguf.load_unet(
                    unet_name="flux1-dev-Q8_0.gguf"
                )
                fb_cache = fbcache_nodes.ApplyFBCacheOnModel()
                unetloadergguf_10 = fb_cache.patch(
                    unetloadergguf_10, "diffusion_model", 0.120
                )
                vaeloader_11 = vaeloader.load_vae(vae_name="ae.safetensors")
                dualcliploadergguf_19 = dualcliploadergguf.load_clip(
                    clip_name1="clip_l.safetensors",
                    clip_name2="t5-v1_1-xxl-encoder-Q8_0.gguf",
                    type="flux",
                )
                emptylatentimage_5 = emptylatentimage.generate(
                    width=w, height=h, batch_size=batch
                )
                cliptextencodeflux_15 = cliptextencodeflux.encode(
                    clip_l=prompt,
                    t5xxl=prompt,
                    guidance=3.0,
                    clip=dualcliploadergguf_19[0],
                    flux_enabled=True,
                )
                conditioningzeroout_16 = conditioningzeroout.zero_out(
                    conditioning=cliptextencodeflux_15[0]
                )
                ksampler_3 = ksampler.sample(
                    seed=random.randint(1, 2**64),
                    steps=20,
                    cfg=1,
                    sampler_name="euler_cfgpp",
                    scheduler="beta",
                    denoise=1,
                    model=unetloadergguf_10[0],
                    positive=cliptextencodeflux_15[0],
                    negative=conditioningzeroout_16[0],
                    latent_image=emptylatentimage_5[0],
                    pipeline=True,
                    flux=True,
                )

                vaedecode_8 = vaedecode.decode(
                    samples=ksampler_3[0],
                    vae=vaeloader_11[0],
                    flux=True,
                )

                saveimage.save_images(
                    filename_prefix="LD-Flux",
                    images=hdr.apply_hdr2(vaedecode_8[0])
                    if autohdr
                    else vaedecode_8[0],
                )
        else:
            while prompt is None:
                pass
            with torch.inference_mode():
                try:
                    loraloader = LoRas.LoraLoader()
                    loraloader_274 = loraloader.load_lora(
                        lora_name="add_detail.safetensors",
                        strength_model=0.7,
                        strength_clip=0.7,
                        model=checkpointloadersimple_241[0],
                        clip=checkpointloadersimple_241[1],
                    )
                    print("loading add_detail.safetensors")
                except:
                    loraloader_274 = checkpointloadersimple_241
                clipsetlastlayer = Clip.CLIPSetLastLayer()
                clipsetlastlayer_257 = clipsetlastlayer.set_last_layer(
                    stop_at_clip_layer=-2, clip=loraloader_274[1]
                )
                applystablefast_158 = loraloader_274
                cliptextencode_242 = cliptextencode.encode(
                    text=prompt,
                    clip=clipsetlastlayer_257[0],
                )
                cliptextencode_243 = cliptextencode.encode(
                    text="(worst quality, low quality:1.4), (zombie, sketch, interlocked fingers, comic), (embedding:EasyNegative), (embedding:badhandv4), (embedding:lr), (embedding:ng_deepnegative_v1_75t)",
                    clip=clipsetlastlayer_257[0],
                )
                emptylatentimage_244 = emptylatentimage.generate(
                    width=w, height=h, batch_size=batch
                )
                if stable_fast is True:
                    from modules.StableFast import StableFast

                    applystablefast = StableFast.ApplyStableFastUnet()
                    applystablefast_158 = applystablefast.apply_stable_fast(
                        enable_cuda_graph=False,
                        model=loraloader_274[0],
                    )
                else:
                    applystablefast_158 = loraloader_274
                    # fb_cache = fbcache_nodes.ApplyFBCacheOnModel()
                    # applystablefast_158 = fb_cache.patch(
                    #     applystablefast_158, "diffusion_model", 0.120
                    # )

                ksampler_239 = ksampler_instance.sample(
                    seed=seed,
                    steps=20,
                    cfg=7,
                    sampler_name=sampler_name,
                    scheduler="karras",
                    denoise=1,
                    pipeline=True,
                    model=hidiffoptimizer.go(
                        model_type="auto", model=applystablefast_158[0]
                    )[0],
                    positive=cliptextencode_242[0],
                    negative=cliptextencode_243[0],
                    latent_image=emptylatentimage_244[0],
                )
                if hires_fix:
                    latentupscale_254 = latent_upscale.upscale(
                        width=w * 2,
                        height=h * 2,
                        samples=ksampler_239[0],
                    )
                    ksampler_253 = ksampler_instance.sample(
                        seed=random.randint(1, 2**64),
                        steps=10,
                        cfg=8,
                        sampler_name="euler_ancestral_cfgpp",
                        scheduler="normal",
                        denoise=0.45,
                        model=hidiffoptimizer.go(
                            model_type="auto", model=applystablefast_158[0]
                        )[0],
                        positive=cliptextencode_242[0],
                        negative=cliptextencode_243[0],
                        latent_image=latentupscale_254[0],
                        pipeline=True,
                    )
                else:
                    ksampler_253 = ksampler_239

                vaedecode_240 = vaedecode.decode(
                    samples=ksampler_253[0],
                    vae=checkpointloadersimple_241[2],
                )

            if adetailer:
                with torch.inference_mode():
                    samloader = SAM.SAMLoader()
                    samloader_87 = samloader.load_model(
                        model_name="sam_vit_b_01ec64.pth", device_mode="AUTO"
                    )
                    cliptextencode_124 = cliptextencode.encode(
                        text="royal, detailed, magnificient, beautiful, seducing",
                        clip=loraloader_274[1],
                    )
                    ultralyticsdetectorprovider = bbox.UltralyticsDetectorProvider()
                    ultralyticsdetectorprovider_151 = ultralyticsdetectorprovider.doit(
                        # model_name="face_yolov8m.pt"
                        model_name="person_yolov8m-seg.pt"
                    )
                    bboxdetectorsegs = bbox.BboxDetectorForEach()
                    samdetectorcombined = SAM.SAMDetectorCombined()
                    impactsegsandmask = SEGS.SegsBitwiseAndMask()
                    detailerforeachdebug = ADetailer.DetailerForEachTest()
                    bboxdetectorsegs_132 = bboxdetectorsegs.doit(
                        threshold=0.5,
                        dilation=10,
                        crop_factor=2,
                        drop_size=10,
                        labels="all",
                        bbox_detector=ultralyticsdetectorprovider_151[0],
                        image=vaedecode_240[0],
                    )
                    samdetectorcombined_139 = samdetectorcombined.doit(
                        detection_hint="center-1",
                        dilation=0,
                        threshold=0.93,
                        bbox_expansion=0,
                        mask_hint_threshold=0.7,
                        mask_hint_use_negative="False",
                        sam_model=samloader_87[0],
                        segs=bboxdetectorsegs_132,
                        image=vaedecode_240[0],
                    )
                    if samdetectorcombined_139 is None:
                        return
                    impactsegsandmask_152 = impactsegsandmask.doit(
                        segs=bboxdetectorsegs_132,
                        mask=samdetectorcombined_139[0],
                    )
                    detailerforeachdebug_145 = detailerforeachdebug.doit(
                        guide_size=512,
                        guide_size_for=False,
                        max_size=768,
                        seed=random.randint(1, 2**64),
                        steps=20,
                        cfg=6.5,
                        sampler_name=sampler_name,
                        scheduler="karras",
                        denoise=0.5,
                        feather=5,
                        noise_mask=True,
                        force_inpaint=True,
                        wildcard="",
                        cycle=1,
                        inpaint_model=False,
                        noise_mask_feather=20,
                        image=vaedecode_240[0],
                        segs=impactsegsandmask_152[0],
                        model=applystablefast_158[0],
                        clip=checkpointloadersimple_241[1],
                        vae=checkpointloadersimple_241[2],
                        positive=cliptextencode_124[0],
                        negative=cliptextencode_243[0],
                        pipeline=True,
                    )
                    saveimage.save_images(
                        filename_prefix="LD-body",
                        images=hdr.apply_hdr2(detailerforeachdebug_145[0])
                        if autohdr
                        else detailerforeachdebug_145[0],
                    )
                    ultralyticsdetectorprovider = bbox.UltralyticsDetectorProvider()
                    ultralyticsdetectorprovider_151 = ultralyticsdetectorprovider.doit(
                        model_name="face_yolov9c.pt"
                    )
                    bboxdetectorsegs_132 = bboxdetectorsegs.doit(
                        threshold=0.5,
                        dilation=10,
                        crop_factor=2,
                        drop_size=10,
                        labels="all",
                        bbox_detector=ultralyticsdetectorprovider_151[0],
                        image=detailerforeachdebug_145[0],
                    )
                    samdetectorcombined_139 = samdetectorcombined.doit(
                        detection_hint="center-1",
                        dilation=0,
                        threshold=0.93,
                        bbox_expansion=0,
                        mask_hint_threshold=0.7,
                        mask_hint_use_negative="False",
                        sam_model=samloader_87[0],
                        segs=bboxdetectorsegs_132,
                        image=detailerforeachdebug_145[0],
                    )
                    impactsegsandmask_152 = impactsegsandmask.doit(
                        segs=bboxdetectorsegs_132,
                        mask=samdetectorcombined_139[0],
                    )
                    detailerforeachdebug_145 = detailerforeachdebug.doit(
                        guide_size=512,
                        guide_size_for=False,
                        max_size=768,
                        seed=random.randint(1, 2**64),
                        steps=20,
                        cfg=6.5,
                        sampler_name=sampler_name,
                        scheduler="karras",
                        denoise=0.5,
                        feather=5,
                        noise_mask=True,
                        force_inpaint=True,
                        wildcard="",
                        cycle=1,
                        inpaint_model=False,
                        noise_mask_feather=20,
                        image=detailerforeachdebug_145[0],
                        segs=impactsegsandmask_152[0],
                        model=applystablefast_158[0],
                        clip=checkpointloadersimple_241[1],
                        vae=checkpointloadersimple_241[2],
                        positive=cliptextencode_124[0],
                        negative=cliptextencode_243[0],
                        pipeline=True,
                    )
                    saveimage.save_images(
                        filename_prefix="LD-head",
                        images=hdr.apply_hdr2(detailerforeachdebug_145[0])
                        if autohdr
                        else detailerforeachdebug_145[0],
                    )
            else:
                saveimage.save_images(
                    filename_prefix="LD-HF" if hires_fix else "LD",
                    images=hdr.apply_hdr2(vaedecode_240[0])
                    if autohdr
                    else vaedecode_240[0],
                )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the LightDiffusion pipeline.")
    parser.add_argument("prompt", type=str, help="The prompt for the pipeline.")
    parser.add_argument("width", type=int, help="The width of the generated image.")
    parser.add_argument("height", type=int, help="The height of the generated image.")
    parser.add_argument("number", type=int, help="The number of images to generate.")
    parser.add_argument(
        "batch",
        type=int,
        help="The batch size. aka the number of images to generate at once.",
    )
    parser.add_argument(
        "--hires-fix", action="store_true", help="Enable high-resolution fix."
    )
    parser.add_argument(
        "--adetailer",
        action="store_true",
        help="Enable automatic face and body enhancin.g",
    )
    parser.add_argument(
        "--enhance-prompt",
        action="store_true",
        help="Enable Ollama prompt enhancement. Make sure to have ollama with Ollama installed.",
    )
    parser.add_argument(
        "--img2img",
        action="store_true",
        help="Enable image-to-image mode. This will use the prompt as path to the image.",
    )
    parser.add_argument(
        "--stable-fast",
        action="store_true",
        help="Enable StableFast mode. This will compile the model for faster inference.",
    )
    parser.add_argument(
        "--reuse-seed",
        action="store_true",
        help="Enable to reuse last used seed for sampling, default for False is a random seed at every use.",
    )
    parser.add_argument(
        "--flux",
        action="store_true",
        help="Enable the flux mode.",
    )
    parser.add_argument(
        "--prio-speed",
        action="store_true",
        help="Prioritize speed over quality.",
    )
    parser.add_argument(
        "--autohdr",
        action="store_true",
        help="Enable the AutoHDR mode.",
    )
    parser.add_argument(
        "--realistic-model",
        action="store_true",
        help="Use the realistic model.",
    )
    args = parser.parse_args()

    pipeline(
        args.prompt,
        args.width,
        args.height,
        args.number,
        args.batch,
        args.hires_fix,
        args.adetailer,
        args.enhance_prompt,
        args.img2img,
        args.stable_fast,
        args.reuse_seed,
        args.flux,
        args.prio_speed,
        args.autohdr,
        args.realistic_model,
    )