Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,370 Bytes
d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import collections
import logging
import numpy as np
import scipy
import torch
from modules.sample import sampling_util
def calculate_start_end_timesteps(model: torch.nn.Module, conds: list) -> None:
"""#### Calculate the start and end timesteps for a model.
#### Args:
- `model` (torch.nn.Module): The input model.
- `conds` (list): The list of conditions.
"""
s = model.model_sampling
for t in range(len(conds)):
x = conds[t]
timestep_start = None
timestep_end = None
if "start_percent" in x:
timestep_start = s.percent_to_sigma(x["start_percent"])
if "end_percent" in x:
timestep_end = s.percent_to_sigma(x["end_percent"])
if (timestep_start is not None) or (timestep_end is not None):
n = x.copy()
if timestep_start is not None:
n["timestep_start"] = timestep_start
if timestep_end is not None:
n["timestep_end"] = timestep_end
conds[t] = n
def pre_run_control(model: torch.nn.Module, conds: list) -> None:
"""#### Pre-run control for a model.
#### Args:
- `model` (torch.nn.Module): The input model.
- `conds` (list): The list of conditions.
"""
s = model.model_sampling
for t in range(len(conds)):
x = conds[t]
def percent_to_timestep_function(a):
return s.percent_to_sigma(a)
if "control" in x:
x["control"].pre_run(model, percent_to_timestep_function)
def apply_empty_x_to_equal_area(
conds: list, uncond: list, name: str, uncond_fill_func: callable
) -> None:
"""#### Apply empty x to equal area.
#### Args:
- `conds` (list): The list of conditions.
- `uncond` (list): The list of unconditional conditions.
- `name` (str): The name.
- `uncond_fill_func` (callable): The unconditional fill function.
"""
cond_cnets = []
cond_other = []
uncond_cnets = []
uncond_other = []
for t in range(len(conds)):
x = conds[t]
if "area" not in x:
if name in x and x[name] is not None:
cond_cnets.append(x[name])
else:
cond_other.append((x, t))
for t in range(len(uncond)):
x = uncond[t]
if "area" not in x:
if name in x and x[name] is not None:
uncond_cnets.append(x[name])
else:
uncond_other.append((x, t))
if len(uncond_cnets) > 0:
return
for x in range(len(cond_cnets)):
temp = uncond_other[x % len(uncond_other)]
o = temp[0]
if name in o and o[name] is not None:
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond += [n]
else:
n = o.copy()
n[name] = uncond_fill_func(cond_cnets, x)
uncond[temp[1]] = n
# Define the namedtuple class once outside the function for reuse
CondObj = collections.namedtuple(
"cond_obj", ["input_x", "mult", "conditioning", "area", "control", "patches"]
)
def get_area_and_mult(conds: dict, x_in: torch.Tensor, timestep_in: int) -> CondObj:
"""#### Get the area and multiplier.
#### Args:
- `conds` (dict): The conditions.
- `x_in` (torch.Tensor): The input tensor.
- `timestep_in` (int): The timestep.
#### Returns:
- `collections.namedtuple`: The area and multiplier.
"""
# Cache shape information to avoid repeated access
x_shape = x_in.shape
# Define area dimensions in one operation
area = (x_shape[2], x_shape[3], 0, 0)
# Extract input region efficiently
# Since area[2] and area[3] are 0, this is essentially taking the full tensor
# But we maintain the slice operation for consistency
input_x = x_in[:, :, : area[0], : area[1]]
# Create multiplier tensor directly without intermediate mask creation
# This avoids an unnecessary tensor allocation and multiplication
mult = torch.ones_like(input_x) # strength is 1.0, so just create ones directly
# Prepare conditioning dictionary with cached device and batch_size
conditioning = {}
model_conds = conds["model_conds"]
batch_size = x_shape[0]
device = x_in.device
# Process conditions with cached parameters
for c in model_conds:
conditioning[c] = model_conds[c].process_cond(
batch_size=batch_size, device=device, area=area
)
# Get control directly without redundant variable assignment
control = conds.get("control", None)
patches = None
# Use the pre-defined namedtuple class instead of creating it every call
return CondObj(input_x, mult, conditioning, area, control, patches)
def normal_scheduler(
model_sampling: torch.nn.Module, steps: int, sgm: bool = False, floor: bool = False
) -> torch.FloatTensor:
"""#### Create a normal scheduler.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `steps` (int): The number of steps.
- `sgm` (bool, optional): Whether to use SGM. Defaults to False.
- `floor` (bool, optional): Whether to floor the values. Defaults to False.
#### Returns:
- `torch.FloatTensor`: The scheduler.
"""
s = model_sampling
start = s.timestep(s.sigma_max)
end = s.timestep(s.sigma_min)
timesteps = torch.linspace(start, end, steps)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(s.sigma(ts))
sigs += [0.0]
return torch.FloatTensor(sigs)
def simple_scheduler(model_sampling: torch.nn.Module, steps: int) -> torch.FloatTensor:
"""#### Create a simple scheduler.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `steps` (int): The number of steps.
#### Returns:
- `torch.FloatTensor`: The scheduler.
"""
s = model_sampling
sigs = []
ss = len(s.sigmas) / steps
for x in range(steps):
sigs += [float(s.sigmas[-(1 + int(x * ss))])]
sigs += [0.0]
return torch.FloatTensor(sigs)
# Implemented based on: https://arxiv.org/abs/2407.12173
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
"""Creates a beta scheduler for noise levels based on the beta distribution.
This optimized implementation efficiently computes sigmas using the beta
distribution and caches calculations where possible.
Args:
model_sampling: Model sampling module
steps: Number of steps
alpha: Alpha parameter for beta distribution
beta: Beta parameter for beta distribution
Returns:
torch.FloatTensor: Tensor of sigma values for each step
"""
# Calculate total timesteps once
total_timesteps = len(model_sampling.sigmas) - 1
# Create a cache dictionary for reused values
model_sigmas = model_sampling.sigmas
# Generate evenly spaced values in [0,1) interval
ts_normalized = np.linspace(0, 1, steps, endpoint=False)
# Apply beta inverse CDF to get sampled time points - vectorized operation
ts_beta = scipy.stats.beta.ppf(1 - ts_normalized, alpha, beta)
# Scale to timestep indices and round to integers
ts_indices = np.rint(ts_beta * total_timesteps).astype(np.int32)
# Use numpy's unique function with return_index to efficiently find unique values
# while preserving order
unique_ts, indices = np.unique(ts_indices, return_index=True)
ordered_unique_ts = unique_ts[np.argsort(indices)]
# Map indices to sigma values efficiently
sigs = [float(model_sigmas[idx]) for idx in ordered_unique_ts]
# Add final sigma value of 0.0
sigs.append(0.0)
return torch.FloatTensor(sigs)
def calculate_sigmas(
model_sampling: torch.nn.Module, scheduler_name: str, steps: int
) -> torch.Tensor:
"""#### Calculate the sigmas for a model.
#### Args:
- `model_sampling` (torch.nn.Module): The model sampling module.
- `scheduler_name` (str): The scheduler name.
- `steps` (int): The number of steps.
#### Returns:
- `torch.Tensor`: The calculated sigmas.
"""
if scheduler_name == "karras":
sigmas = sampling_util.get_sigmas_karras(
n=steps,
sigma_min=float(model_sampling.sigma_min),
sigma_max=float(model_sampling.sigma_max),
)
elif scheduler_name == "normal":
sigmas = normal_scheduler(model_sampling, steps)
elif scheduler_name == "simple":
sigmas = simple_scheduler(model_sampling, steps)
elif scheduler_name == "beta":
sigmas = beta_scheduler(model_sampling, steps)
else:
logging.error("error invalid scheduler {}".format(scheduler_name))
return sigmas
def prepare_noise(
latent_image: torch.Tensor, seed: int, noise_inds: list = None
) -> torch.Tensor:
"""#### Prepare noise for a latent image.
#### Args:
- `latent_image` (torch.Tensor): The latent image tensor.
- `seed` (int): The seed for random noise.
- `noise_inds` (list, optional): The noise indices. Defaults to None.
#### Returns:
- `torch.Tensor`: The prepared noise tensor.
"""
generator = torch.manual_seed(seed)
if noise_inds is None:
return torch.randn(
latent_image.size(),
dtype=latent_image.dtype,
layout=latent_image.layout,
generator=generator,
device="cpu",
)
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn(
[1] + list(latent_image.size())[1:],
dtype=latent_image.dtype,
layout=latent_image.layout,
generator=generator,
device="cpu",
)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
|