File size: 10,370 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
cfe609e
 
d9a2e19
cfe609e
 
d9a2e19
cfe609e
 
 
 
 
 
 
 
 
 
d9a2e19
 
cfe609e
 
 
 
d9a2e19
 
cfe609e
d9a2e19
 
cfe609e
d9a2e19
 
cfe609e
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
cfe609e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a2e19
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import collections
import logging
import numpy as np
import scipy
import torch
from modules.sample import sampling_util


def calculate_start_end_timesteps(model: torch.nn.Module, conds: list) -> None:
    """#### Calculate the start and end timesteps for a model.



    #### Args:

        - `model` (torch.nn.Module): The input model.

        - `conds` (list): The list of conditions.

    """
    s = model.model_sampling
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if "start_percent" in x:
            timestep_start = s.percent_to_sigma(x["start_percent"])
        if "end_percent" in x:
            timestep_end = s.percent_to_sigma(x["end_percent"])

        if (timestep_start is not None) or (timestep_end is not None):
            n = x.copy()
            if timestep_start is not None:
                n["timestep_start"] = timestep_start
            if timestep_end is not None:
                n["timestep_end"] = timestep_end
            conds[t] = n


def pre_run_control(model: torch.nn.Module, conds: list) -> None:
    """#### Pre-run control for a model.



    #### Args:

        - `model` (torch.nn.Module): The input model.

        - `conds` (list): The list of conditions.

    """
    s = model.model_sampling
    for t in range(len(conds)):
        x = conds[t]

        def percent_to_timestep_function(a):
            return s.percent_to_sigma(a)

        if "control" in x:
            x["control"].pre_run(model, percent_to_timestep_function)


def apply_empty_x_to_equal_area(

    conds: list, uncond: list, name: str, uncond_fill_func: callable

) -> None:
    """#### Apply empty x to equal area.



    #### Args:

        - `conds` (list): The list of conditions.

        - `uncond` (list): The list of unconditional conditions.

        - `name` (str): The name.

        - `uncond_fill_func` (callable): The unconditional fill function.

    """
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if "area" not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if "area" not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
        if name in o and o[name] is not None:
            n = o.copy()
            n[name] = uncond_fill_func(cond_cnets, x)
            uncond += [n]
        else:
            n = o.copy()
            n[name] = uncond_fill_func(cond_cnets, x)
            uncond[temp[1]] = n


# Define the namedtuple class once outside the function for reuse
CondObj = collections.namedtuple(
    "cond_obj", ["input_x", "mult", "conditioning", "area", "control", "patches"]
)


def get_area_and_mult(conds: dict, x_in: torch.Tensor, timestep_in: int) -> CondObj:
    """#### Get the area and multiplier.



    #### Args:

        - `conds` (dict): The conditions.

        - `x_in` (torch.Tensor): The input tensor.

        - `timestep_in` (int): The timestep.



    #### Returns:

        - `collections.namedtuple`: The area and multiplier.

    """
    # Cache shape information to avoid repeated access
    x_shape = x_in.shape

    # Define area dimensions in one operation
    area = (x_shape[2], x_shape[3], 0, 0)

    # Extract input region efficiently
    # Since area[2] and area[3] are 0, this is essentially taking the full tensor
    # But we maintain the slice operation for consistency
    input_x = x_in[:, :, : area[0], : area[1]]

    # Create multiplier tensor directly without intermediate mask creation
    # This avoids an unnecessary tensor allocation and multiplication
    mult = torch.ones_like(input_x)  # strength is 1.0, so just create ones directly

    # Prepare conditioning dictionary with cached device and batch_size
    conditioning = {}
    model_conds = conds["model_conds"]
    batch_size = x_shape[0]
    device = x_in.device

    # Process conditions with cached parameters
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(
            batch_size=batch_size, device=device, area=area
        )

    # Get control directly without redundant variable assignment
    control = conds.get("control", None)
    patches = None

    # Use the pre-defined namedtuple class instead of creating it every call
    return CondObj(input_x, mult, conditioning, area, control, patches)


def normal_scheduler(

    model_sampling: torch.nn.Module, steps: int, sgm: bool = False, floor: bool = False

) -> torch.FloatTensor:
    """#### Create a normal scheduler.



    #### Args:

        - `model_sampling` (torch.nn.Module): The model sampling module.

        - `steps` (int): The number of steps.

        - `sgm` (bool, optional): Whether to use SGM. Defaults to False.

        - `floor` (bool, optional): Whether to floor the values. Defaults to False.



    #### Returns:

        - `torch.FloatTensor`: The scheduler.

    """
    s = model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    timesteps = torch.linspace(start, end, steps)

    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
        sigs.append(s.sigma(ts))
    sigs += [0.0]
    return torch.FloatTensor(sigs)


def simple_scheduler(model_sampling: torch.nn.Module, steps: int) -> torch.FloatTensor:
    """#### Create a simple scheduler.



    #### Args:

        - `model_sampling` (torch.nn.Module): The model sampling module.

        - `steps` (int): The number of steps.



    #### Returns:

        - `torch.FloatTensor`: The scheduler.

    """
    s = model_sampling
    sigs = []
    ss = len(s.sigmas) / steps
    for x in range(steps):
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)


# Implemented based on: https://arxiv.org/abs/2407.12173
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
    """Creates a beta scheduler for noise levels based on the beta distribution.



    This optimized implementation efficiently computes sigmas using the beta

    distribution and caches calculations where possible.



    Args:

        model_sampling: Model sampling module

        steps: Number of steps

        alpha: Alpha parameter for beta distribution

        beta: Beta parameter for beta distribution



    Returns:

        torch.FloatTensor: Tensor of sigma values for each step

    """
    # Calculate total timesteps once
    total_timesteps = len(model_sampling.sigmas) - 1

    # Create a cache dictionary for reused values
    model_sigmas = model_sampling.sigmas

    # Generate evenly spaced values in [0,1) interval
    ts_normalized = np.linspace(0, 1, steps, endpoint=False)

    # Apply beta inverse CDF to get sampled time points - vectorized operation
    ts_beta = scipy.stats.beta.ppf(1 - ts_normalized, alpha, beta)

    # Scale to timestep indices and round to integers
    ts_indices = np.rint(ts_beta * total_timesteps).astype(np.int32)

    # Use numpy's unique function with return_index to efficiently find unique values
    # while preserving order
    unique_ts, indices = np.unique(ts_indices, return_index=True)
    ordered_unique_ts = unique_ts[np.argsort(indices)]

    # Map indices to sigma values efficiently
    sigs = [float(model_sigmas[idx]) for idx in ordered_unique_ts]

    # Add final sigma value of 0.0
    sigs.append(0.0)

    return torch.FloatTensor(sigs)


def calculate_sigmas(

    model_sampling: torch.nn.Module, scheduler_name: str, steps: int

) -> torch.Tensor:
    """#### Calculate the sigmas for a model.



    #### Args:

        - `model_sampling` (torch.nn.Module): The model sampling module.

        - `scheduler_name` (str): The scheduler name.

        - `steps` (int): The number of steps.



    #### Returns:

        - `torch.Tensor`: The calculated sigmas.

    """
    if scheduler_name == "karras":
        sigmas = sampling_util.get_sigmas_karras(
            n=steps,
            sigma_min=float(model_sampling.sigma_min),
            sigma_max=float(model_sampling.sigma_max),
        )
    elif scheduler_name == "normal":
        sigmas = normal_scheduler(model_sampling, steps)
    elif scheduler_name == "simple":
        sigmas = simple_scheduler(model_sampling, steps)
    elif scheduler_name == "beta":
        sigmas = beta_scheduler(model_sampling, steps)
    else:
        logging.error("error invalid scheduler {}".format(scheduler_name))
    return sigmas


def prepare_noise(

    latent_image: torch.Tensor, seed: int, noise_inds: list = None

) -> torch.Tensor:
    """#### Prepare noise for a latent image.



    #### Args:

        - `latent_image` (torch.Tensor): The latent image tensor.

        - `seed` (int): The seed for random noise.

        - `noise_inds` (list, optional): The noise indices. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The prepared noise tensor.

    """
    generator = torch.manual_seed(seed)
    if noise_inds is None:
        return torch.randn(
            latent_image.size(),
            dtype=latent_image.dtype,
            layout=latent_image.layout,
            generator=generator,
            device="cpu",
        )

    unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
    noises = []
    for i in range(unique_inds[-1] + 1):
        noise = torch.randn(
            [1] + list(latent_image.size())[1:],
            dtype=latent_image.dtype,
            layout=latent_image.layout,
            generator=generator,
            device="cpu",
        )
        if i in unique_inds:
            noises.append(noise)
    noises = [noises[i] for i in inverse]
    noises = torch.cat(noises, axis=0)
    return noises