File size: 11,720 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
cfe609e
 
 
 
d9a2e19
cfe609e
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
 
 
 
 
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
 
 
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
 
 
 
 
 
 
 
 
d9a2e19
cfe609e
d9a2e19
 
cfe609e
 
 
 
 
 
 
d9a2e19
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
cfe609e
 
 
 
 
 
 
 
 
d9a2e19
 
cfe609e
 
d9a2e19
 
 
 
 
 
 
 
 
 
 
cfe609e
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe609e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import math
import torch
from modules.cond import cond, cond_util


def cfg_function(

    model: torch.nn.Module,

    cond_pred: torch.Tensor,

    uncond_pred: torch.Tensor,

    cond_scale: float,

    x: torch.Tensor,

    timestep: int,

    model_options: dict = {},

    cond: torch.Tensor = None,

    uncond: torch.Tensor = None,

) -> torch.Tensor:
    """#### Apply classifier-free guidance (CFG) to the model predictions.



    #### Args:

        - `model` (torch.nn.Module): The model.

        - `cond_pred` (torch.Tensor): The conditioned prediction.

        - `uncond_pred` (torch.Tensor): The unconditioned prediction.

        - `cond_scale` (float): The CFG scale.

        - `x` (torch.Tensor): The input tensor.

        - `timestep` (int): The current timestep.

        - `model_options` (dict, optional): Additional model options. Defaults to {}.

        - `cond` (torch.Tensor, optional): The conditioned tensor. Defaults to None.

        - `uncond` (torch.Tensor, optional): The unconditioned tensor. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The CFG result.

    """
    # Check for custom sampler CFG function first
    if "sampler_cfg_function" in model_options:
        # Precompute differences to avoid redundant operations
        cond_diff = x - cond_pred
        uncond_diff = x - uncond_pred

        args = {
            "cond": cond_diff,
            "uncond": uncond_diff,
            "cond_scale": cond_scale,
            "timestep": timestep,
            "input": x,
            "sigma": timestep,
            "cond_denoised": cond_pred,
            "uncond_denoised": uncond_pred,
            "model": model,
            "model_options": model_options,
        }
        cfg_result = x - model_options["sampler_cfg_function"](args)
    else:
        # Standard CFG calculation - optimized to avoid intermediate tensor allocation
        # When cond_scale = 1.0, we can just return cond_pred without computation
        if math.isclose(cond_scale, 1.0):
            cfg_result = cond_pred
        else:
            # Fused operation: uncond_pred + (cond_pred - uncond_pred) * cond_scale
            # Equivalent to: uncond_pred * (1 - cond_scale) + cond_pred * cond_scale
            cfg_result = torch.lerp(uncond_pred, cond_pred, cond_scale)

    # Apply post-CFG functions if any
    post_cfg_functions = model_options.get("sampler_post_cfg_function", [])
    if post_cfg_functions:
        args = {
            "denoised": cfg_result,
            "cond": cond,
            "uncond": uncond,
            "model": model,
            "uncond_denoised": uncond_pred,
            "cond_denoised": cond_pred,
            "sigma": timestep,
            "model_options": model_options,
            "input": x,
        }

        # Apply each post-CFG function in sequence
        for fn in post_cfg_functions:
            cfg_result = fn(args)
            # Update the denoised result for the next function
            args["denoised"] = cfg_result

    return cfg_result


def sampling_function(

    model: torch.nn.Module,

    x: torch.Tensor,

    timestep: int,

    uncond: torch.Tensor,

    condo: torch.Tensor,

    cond_scale: float,

    model_options: dict = {},

    seed: int = None,

) -> torch.Tensor:
    """#### Perform sampling with CFG.



    #### Args:

        - `model` (torch.nn.Module): The model.

        - `x` (torch.Tensor): The input tensor.

        - `timestep` (int): The current timestep.

        - `uncond` (torch.Tensor): The unconditioned tensor.

        - `condo` (torch.Tensor): The conditioned tensor.

        - `cond_scale` (float): The CFG scale.

        - `model_options` (dict, optional): Additional model options. Defaults to {}.

        - `seed` (int, optional): The random seed. Defaults to None.



    #### Returns:

        - `torch.Tensor`: The sampled tensor.

    """
    # Optimize conditional logic for uncond
    uncond_ = (
        None
        if (
            math.isclose(cond_scale, 1.0)
            and not model_options.get("disable_cfg1_optimization", False)
        )
        else uncond
    )

    # Create conditions list once
    conds = [condo, uncond_]

    # Get model predictions for both conditions
    cond_outputs = cond.calc_cond_batch(model, conds, x, timestep, model_options)

    # Apply pre-CFG functions if any
    pre_cfg_functions = model_options.get("sampler_pre_cfg_function", [])
    if pre_cfg_functions:
        # Create args dictionary once
        args = {
            "conds": conds,
            "conds_out": cond_outputs,
            "cond_scale": cond_scale,
            "timestep": timestep,
            "input": x,
            "sigma": timestep,
            "model": model,
            "model_options": model_options,
        }

        # Apply each pre-CFG function
        for fn in pre_cfg_functions:
            cond_outputs = fn(args)
            args["conds_out"] = cond_outputs

    # Extract conditional and unconditional outputs explicitly for clarity
    cond_pred, uncond_pred = cond_outputs[0], cond_outputs[1]

    # Apply the CFG function
    return cfg_function(
        model,
        cond_pred,
        uncond_pred,
        cond_scale,
        x,
        timestep,
        model_options=model_options,
        cond=condo,
        uncond=uncond_,
    )


class CFGGuider:
    """#### Class for guiding the sampling process with CFG."""

    def __init__(self, model_patcher, flux=False):
        """#### Initialize the CFGGuider.



        #### Args:

            - `model_patcher` (object): The model patcher.

        """
        self.model_patcher = model_patcher
        self.model_options = model_patcher.model_options
        self.original_conds = {}
        self.cfg = 1.0
        self.flux = flux

    def set_conds(self, positive, negative):
        """#### Set the conditions for CFG.



        #### Args:

            - `positive` (torch.Tensor): The positive condition.

            - `negative` (torch.Tensor): The negative condition.

        """
        self.inner_set_conds({"positive": positive, "negative": negative})

    def set_cfg(self, cfg):
        """#### Set the CFG scale.



        #### Args:

            - `cfg` (float): The CFG scale.

        """
        self.cfg = cfg

    def inner_set_conds(self, conds):
        """#### Set the internal conditions.



        #### Args:

            - `conds` (dict): The conditions.

        """
        for k in conds:
            self.original_conds[k] = cond.convert_cond(conds[k])

    def __call__(self, *args, **kwargs):
        """#### Call the CFGGuider to predict noise.



        #### Returns:

            - `torch.Tensor`: The predicted noise.

        """
        return self.predict_noise(*args, **kwargs)

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        """#### Predict noise using CFG.



        #### Args:

            - `x` (torch.Tensor): The input tensor.

            - `timestep` (int): The current timestep.

            - `model_options` (dict, optional): Additional model options. Defaults to {}.

            - `seed` (int, optional): The random seed. Defaults to None.



        #### Returns:

            - `torch.Tensor`: The predicted noise.

        """
        return sampling_function(
            self.inner_model,
            x,
            timestep,
            self.conds.get("negative", None),
            self.conds.get("positive", None),
            self.cfg,
            model_options=model_options,
            seed=seed,
        )

    def inner_sample(

        self,

        noise,

        latent_image,

        device,

        sampler,

        sigmas,

        denoise_mask,

        callback,

        disable_pbar,

        seed,

        pipeline=False,

    ):
        """#### Perform the inner sampling process.



        #### Args:

            - `noise` (torch.Tensor): The noise tensor.

            - `latent_image` (torch.Tensor): The latent image tensor.

            - `device` (torch.device): The device to use.

            - `sampler` (object): The sampler object.

            - `sigmas` (torch.Tensor): The sigmas tensor.

            - `denoise_mask` (torch.Tensor): The denoise mask tensor.

            - `callback` (callable): The callback function.

            - `disable_pbar` (bool): Whether to disable the progress bar.

            - `seed` (int): The random seed.

            - `pipeline` (bool, optional): Whether to use the pipeline. Defaults to False.



        #### Returns:

            - `torch.Tensor`: The sampled tensor.

        """
        if (
            latent_image is not None and torch.count_nonzero(latent_image) > 0
        ):  # Don't shift the empty latent image.
            latent_image = self.inner_model.process_latent_in(latent_image)

        self.conds = cond.process_conds(
            self.inner_model,
            noise,
            self.conds,
            device,
            latent_image,
            denoise_mask,
            seed,
        )

        extra_args = {"model_options": self.model_options, "seed": seed}

        samples = sampler.sample(
            self,
            sigmas,
            extra_args,
            callback,
            noise,
            latent_image,
            denoise_mask,
            disable_pbar,
            pipeline=pipeline,
        )
        return self.inner_model.process_latent_out(samples.to(torch.float32))

    def sample(

        self,

        noise,

        latent_image,

        sampler,

        sigmas,

        denoise_mask=None,

        callback=None,

        disable_pbar=False,

        seed=None,

        pipeline=False,

    ):
        """#### Perform the sampling process with CFG.



        #### Args:

            - `noise` (torch.Tensor): The noise tensor.

            - `latent_image` (torch.Tensor): The latent image tensor.

            - `sampler` (object): The sampler object.

            - `sigmas` (torch.Tensor): The sigmas tensor.

            - `denoise_mask` (torch.Tensor, optional): The denoise mask tensor. Defaults to None.

            - `callback` (callable, optional): The callback function. Defaults to None.

            - `disable_pbar` (bool, optional): Whether to disable the progress bar. Defaults to False.

            - `seed` (int, optional): The random seed. Defaults to None.

            - `pipeline` (bool, optional): Whether to use the pipeline. Defaults to False.



        #### Returns:

            - `torch.Tensor`: The sampled tensor.

        """
        self.conds = {}
        for k in self.original_conds:
            self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))

        self.inner_model, self.conds, self.loaded_models = cond_util.prepare_sampling(
            self.model_patcher, noise.shape, self.conds, flux_enabled=self.flux
        )
        device = self.model_patcher.load_device

        noise = noise.to(device)
        latent_image = latent_image.to(device)
        sigmas = sigmas.to(device)

        output = self.inner_sample(
            noise,
            latent_image,
            device,
            sampler,
            sigmas,
            denoise_mask,
            callback,
            disable_pbar,
            seed,
            pipeline=pipeline,
        )

        cond_util.cleanup_models(self.conds, self.loaded_models)
        del self.inner_model
        del self.conds
        del self.loaded_models
        return output