Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,720 Bytes
d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import math
import torch
from modules.cond import cond, cond_util
def cfg_function(
model: torch.nn.Module,
cond_pred: torch.Tensor,
uncond_pred: torch.Tensor,
cond_scale: float,
x: torch.Tensor,
timestep: int,
model_options: dict = {},
cond: torch.Tensor = None,
uncond: torch.Tensor = None,
) -> torch.Tensor:
"""#### Apply classifier-free guidance (CFG) to the model predictions.
#### Args:
- `model` (torch.nn.Module): The model.
- `cond_pred` (torch.Tensor): The conditioned prediction.
- `uncond_pred` (torch.Tensor): The unconditioned prediction.
- `cond_scale` (float): The CFG scale.
- `x` (torch.Tensor): The input tensor.
- `timestep` (int): The current timestep.
- `model_options` (dict, optional): Additional model options. Defaults to {}.
- `cond` (torch.Tensor, optional): The conditioned tensor. Defaults to None.
- `uncond` (torch.Tensor, optional): The unconditioned tensor. Defaults to None.
#### Returns:
- `torch.Tensor`: The CFG result.
"""
# Check for custom sampler CFG function first
if "sampler_cfg_function" in model_options:
# Precompute differences to avoid redundant operations
cond_diff = x - cond_pred
uncond_diff = x - uncond_pred
args = {
"cond": cond_diff,
"uncond": uncond_diff,
"cond_scale": cond_scale,
"timestep": timestep,
"input": x,
"sigma": timestep,
"cond_denoised": cond_pred,
"uncond_denoised": uncond_pred,
"model": model,
"model_options": model_options,
}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
# Standard CFG calculation - optimized to avoid intermediate tensor allocation
# When cond_scale = 1.0, we can just return cond_pred without computation
if math.isclose(cond_scale, 1.0):
cfg_result = cond_pred
else:
# Fused operation: uncond_pred + (cond_pred - uncond_pred) * cond_scale
# Equivalent to: uncond_pred * (1 - cond_scale) + cond_pred * cond_scale
cfg_result = torch.lerp(uncond_pred, cond_pred, cond_scale)
# Apply post-CFG functions if any
post_cfg_functions = model_options.get("sampler_post_cfg_function", [])
if post_cfg_functions:
args = {
"denoised": cfg_result,
"cond": cond,
"uncond": uncond,
"model": model,
"uncond_denoised": uncond_pred,
"cond_denoised": cond_pred,
"sigma": timestep,
"model_options": model_options,
"input": x,
}
# Apply each post-CFG function in sequence
for fn in post_cfg_functions:
cfg_result = fn(args)
# Update the denoised result for the next function
args["denoised"] = cfg_result
return cfg_result
def sampling_function(
model: torch.nn.Module,
x: torch.Tensor,
timestep: int,
uncond: torch.Tensor,
condo: torch.Tensor,
cond_scale: float,
model_options: dict = {},
seed: int = None,
) -> torch.Tensor:
"""#### Perform sampling with CFG.
#### Args:
- `model` (torch.nn.Module): The model.
- `x` (torch.Tensor): The input tensor.
- `timestep` (int): The current timestep.
- `uncond` (torch.Tensor): The unconditioned tensor.
- `condo` (torch.Tensor): The conditioned tensor.
- `cond_scale` (float): The CFG scale.
- `model_options` (dict, optional): Additional model options. Defaults to {}.
- `seed` (int, optional): The random seed. Defaults to None.
#### Returns:
- `torch.Tensor`: The sampled tensor.
"""
# Optimize conditional logic for uncond
uncond_ = (
None
if (
math.isclose(cond_scale, 1.0)
and not model_options.get("disable_cfg1_optimization", False)
)
else uncond
)
# Create conditions list once
conds = [condo, uncond_]
# Get model predictions for both conditions
cond_outputs = cond.calc_cond_batch(model, conds, x, timestep, model_options)
# Apply pre-CFG functions if any
pre_cfg_functions = model_options.get("sampler_pre_cfg_function", [])
if pre_cfg_functions:
# Create args dictionary once
args = {
"conds": conds,
"conds_out": cond_outputs,
"cond_scale": cond_scale,
"timestep": timestep,
"input": x,
"sigma": timestep,
"model": model,
"model_options": model_options,
}
# Apply each pre-CFG function
for fn in pre_cfg_functions:
cond_outputs = fn(args)
args["conds_out"] = cond_outputs
# Extract conditional and unconditional outputs explicitly for clarity
cond_pred, uncond_pred = cond_outputs[0], cond_outputs[1]
# Apply the CFG function
return cfg_function(
model,
cond_pred,
uncond_pred,
cond_scale,
x,
timestep,
model_options=model_options,
cond=condo,
uncond=uncond_,
)
class CFGGuider:
"""#### Class for guiding the sampling process with CFG."""
def __init__(self, model_patcher, flux=False):
"""#### Initialize the CFGGuider.
#### Args:
- `model_patcher` (object): The model patcher.
"""
self.model_patcher = model_patcher
self.model_options = model_patcher.model_options
self.original_conds = {}
self.cfg = 1.0
self.flux = flux
def set_conds(self, positive, negative):
"""#### Set the conditions for CFG.
#### Args:
- `positive` (torch.Tensor): The positive condition.
- `negative` (torch.Tensor): The negative condition.
"""
self.inner_set_conds({"positive": positive, "negative": negative})
def set_cfg(self, cfg):
"""#### Set the CFG scale.
#### Args:
- `cfg` (float): The CFG scale.
"""
self.cfg = cfg
def inner_set_conds(self, conds):
"""#### Set the internal conditions.
#### Args:
- `conds` (dict): The conditions.
"""
for k in conds:
self.original_conds[k] = cond.convert_cond(conds[k])
def __call__(self, *args, **kwargs):
"""#### Call the CFGGuider to predict noise.
#### Returns:
- `torch.Tensor`: The predicted noise.
"""
return self.predict_noise(*args, **kwargs)
def predict_noise(self, x, timestep, model_options={}, seed=None):
"""#### Predict noise using CFG.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `timestep` (int): The current timestep.
- `model_options` (dict, optional): Additional model options. Defaults to {}.
- `seed` (int, optional): The random seed. Defaults to None.
#### Returns:
- `torch.Tensor`: The predicted noise.
"""
return sampling_function(
self.inner_model,
x,
timestep,
self.conds.get("negative", None),
self.conds.get("positive", None),
self.cfg,
model_options=model_options,
seed=seed,
)
def inner_sample(
self,
noise,
latent_image,
device,
sampler,
sigmas,
denoise_mask,
callback,
disable_pbar,
seed,
pipeline=False,
):
"""#### Perform the inner sampling process.
#### Args:
- `noise` (torch.Tensor): The noise tensor.
- `latent_image` (torch.Tensor): The latent image tensor.
- `device` (torch.device): The device to use.
- `sampler` (object): The sampler object.
- `sigmas` (torch.Tensor): The sigmas tensor.
- `denoise_mask` (torch.Tensor): The denoise mask tensor.
- `callback` (callable): The callback function.
- `disable_pbar` (bool): Whether to disable the progress bar.
- `seed` (int): The random seed.
- `pipeline` (bool, optional): Whether to use the pipeline. Defaults to False.
#### Returns:
- `torch.Tensor`: The sampled tensor.
"""
if (
latent_image is not None and torch.count_nonzero(latent_image) > 0
): # Don't shift the empty latent image.
latent_image = self.inner_model.process_latent_in(latent_image)
self.conds = cond.process_conds(
self.inner_model,
noise,
self.conds,
device,
latent_image,
denoise_mask,
seed,
)
extra_args = {"model_options": self.model_options, "seed": seed}
samples = sampler.sample(
self,
sigmas,
extra_args,
callback,
noise,
latent_image,
denoise_mask,
disable_pbar,
pipeline=pipeline,
)
return self.inner_model.process_latent_out(samples.to(torch.float32))
def sample(
self,
noise,
latent_image,
sampler,
sigmas,
denoise_mask=None,
callback=None,
disable_pbar=False,
seed=None,
pipeline=False,
):
"""#### Perform the sampling process with CFG.
#### Args:
- `noise` (torch.Tensor): The noise tensor.
- `latent_image` (torch.Tensor): The latent image tensor.
- `sampler` (object): The sampler object.
- `sigmas` (torch.Tensor): The sigmas tensor.
- `denoise_mask` (torch.Tensor, optional): The denoise mask tensor. Defaults to None.
- `callback` (callable, optional): The callback function. Defaults to None.
- `disable_pbar` (bool, optional): Whether to disable the progress bar. Defaults to False.
- `seed` (int, optional): The random seed. Defaults to None.
- `pipeline` (bool, optional): Whether to use the pipeline. Defaults to False.
#### Returns:
- `torch.Tensor`: The sampled tensor.
"""
self.conds = {}
for k in self.original_conds:
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
self.inner_model, self.conds, self.loaded_models = cond_util.prepare_sampling(
self.model_patcher, noise.shape, self.conds, flux_enabled=self.flux
)
device = self.model_patcher.load_device
noise = noise.to(device)
latent_image = latent_image.to(device)
sigmas = sigmas.to(device)
output = self.inner_sample(
noise,
latent_image,
device,
sampler,
sigmas,
denoise_mask,
callback,
disable_pbar,
seed,
pipeline=pipeline,
)
cond_util.cleanup_models(self.conds, self.loaded_models)
del self.inner_model
del self.conds
del self.loaded_models
return output
|