Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,089 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
from __future__ import annotations
import contextlib
import importlib
import itertools
import logging
import math
import sys
from functools import partial
from typing import TYPE_CHECKING, Callable, NamedTuple
from modules.Utilities import Latent, upscale
import torch.nn.functional as torchf
if TYPE_CHECKING:
from collections.abc import Sequence
from types import ModuleType
try:
from enum import StrEnum
except ImportError:
# Compatibility workaround for pre-3.11 Python versions.
from enum import Enum
class StrEnum(str, Enum):
@staticmethod
def _generate_next_value_(name: str, *_unused: list) -> str:
return name.lower()
def __str__(self) -> str:
return str(self.value)
logger = logging.getLogger(__name__)
UPSCALE_METHODS = ("bicubic", "bislerp", "bilinear", "nearest-exact", "nearest", "area")
class TimeMode(StrEnum):
PERCENT = "percent"
TIMESTEP = "timestep"
SIGMA = "sigma"
class ModelType(StrEnum):
SD15 = "SD15"
SDXL = "SDXL"
def parse_blocks(name: str, val: str | Sequence[int]) -> set[tuple[str, int]]:
"""#### Parse block definitions.
#### Args:
- `name` (str): The name of the block.
- `val` (Union[str, Sequence[int]]): The block values.
#### Returns:
- `set[tuple[str, int]]`: The parsed blocks.
"""
if isinstance(val, (tuple, list)):
# Handle a sequence passed in via YAML parameters.
if not all(isinstance(item, int) and item >= 0 for item in val):
raise ValueError(
"Bad blocks definition, must be comma separated string or sequence of positive int",
)
return {(name, item) for item in val}
vals = (rawval.strip() for rawval in val.split(","))
return {(name, int(val.strip())) for val in vals if val}
def convert_time(
ms: object,
time_mode: TimeMode,
start_time: float,
end_time: float,
) -> tuple[float, float]:
"""#### Convert time based on the mode.
#### Args:
- `ms` (Any): The time object.
- `time_mode` (TimeMode): The time mode.
- `start_time` (float): The start time.
- `end_time` (float): The end time.
#### Returns:
- `Tuple[float, float]`: The converted start and end times.
"""
if time_mode == TimeMode.SIGMA:
return (start_time, end_time)
if time_mode == TimeMode.TIMESTEP:
start_time = 1.0 - (start_time / 999.0)
end_time = 1.0 - (end_time / 999.0)
else:
if start_time > 1.0 or start_time < 0.0:
raise ValueError(
"invalid value for start percent",
)
if end_time > 1.0 or end_time < 0.0:
raise ValueError(
"invalid value for end percent",
)
return (
round(ms.percent_to_sigma(start_time), 4),
round(ms.percent_to_sigma(end_time), 4),
)
raise ValueError("invalid time mode")
def get_sigma(options: dict, key: str = "sigmas") -> float | None:
"""#### Get the sigma value from options.
#### Args:
- `options` (dict): The options dictionary.
- `key` (str, optional): The key to look for. Defaults to "sigmas".
#### Returns:
- `Optional[float]`: The sigma value if found, otherwise None.
"""
if not isinstance(options, dict):
return None
sigmas = options.get(key)
if sigmas is None:
return None
if isinstance(sigmas, float):
return sigmas
return sigmas.detach().cpu().max().item()
def check_time(time_arg: dict | float, start_sigma: float, end_sigma: float) -> bool:
"""#### Check if the time is within the sigma range.
#### Args:
- `time_arg` (Union[dict, float]): The time argument.
- `start_sigma` (float): The start sigma.
- `end_sigma` (float): The end sigma.
#### Returns:
- `bool`: Whether the time is within the range.
"""
sigma = get_sigma(time_arg) if not isinstance(time_arg, float) else time_arg
if sigma is None:
return False
return sigma <= start_sigma and sigma >= end_sigma
__block_to_num_map = {"input": 0, "middle": 1, "output": 2}
def block_to_num(block_type: str, block_id: int) -> tuple[int, int]:
"""#### Convert block type and id to numerical representation.
#### Args:
- `block_type` (str): The block type.
- `block_id` (int): The block id.
#### Returns:
- `Tuple[int, int]`: The numerical representation of the block.
"""
type_id = __block_to_num_map.get(block_type)
if type_id is None:
errstr = f"Got unexpected block type {block_type}!"
raise ValueError(errstr)
return (type_id, block_id)
# Naive and totally inaccurate way to factorize target_res into rescaled integer width/height
def rescale_size(
width: int,
height: int,
target_res: int,
*,
tolerance=1,
) -> tuple[int, int]:
"""#### Rescale size to fit target resolution.
#### Args:
- `width` (int): The width.
- `height` (int): The height.
- `target_res` (int): The target resolution.
- `tolerance` (int, optional): The tolerance. Defaults to 1.
#### Returns:
- `Tuple[int, int]`: The rescaled width and height.
"""
tolerance = min(target_res, tolerance)
def get_neighbors(num: float):
if num < 1:
return None
numi = int(num)
return tuple(
numi + adj
for adj in sorted(
range(
-min(numi - 1, tolerance),
tolerance + 1 + math.ceil(num - numi),
),
key=abs,
)
)
scale = math.sqrt(height * width / target_res)
height_scaled, width_scaled = height / scale, width / scale
height_rounded = get_neighbors(height_scaled)
width_rounded = get_neighbors(width_scaled)
for h, w in itertools.zip_longest(height_rounded, width_rounded):
h_adj = target_res / w if w is not None else 0.1
if h_adj % 1 == 0:
return (w, int(h_adj))
if h is None:
continue
w_adj = target_res / h
if w_adj % 1 == 0:
return (int(w_adj), h)
msg = f"Can't rescale {width} and {height} to fit {target_res}"
raise ValueError(msg)
def guess_model_type(model: object) -> ModelType | None:
"""#### Guess the model type.
#### Args:
- `model` (object): The model object.
#### Returns:
- `Optional[ModelType]`: The guessed model type.
"""
latent_format = model.get_model_object("latent_format")
if isinstance(latent_format, Latent.SD15):
return ModelType.SD15
return None
def sigma_to_pct(ms, sigma):
"""#### Convert sigma to percentage.
#### Args:
- `ms` (Any): The time object.
- `sigma` (float): The sigma value.
#### Returns:
- `float`: The percentage.
"""
return (1.0 - (ms.timestep(sigma).detach().cpu() / 999.0)).clamp(0.0, 1.0).item()
def fade_scale(
pct,
start_pct=0.0,
end_pct=1.0,
fade_start=1.0,
fade_cap=0.0,
):
"""#### Calculate the fade scale.
#### Args:
- `pct` (float): The percentage.
- `start_pct` (float, optional): The start percentage. Defaults to 0.0.
- `end_pct` (float, optional): The end percentage. Defaults to 1.0.
- `fade_start` (float, optional): The fade start. Defaults to 1.0.
- `fade_cap` (float, optional): The fade cap. Defaults to 0.0.
#### Returns:
- `float`: The fade scale.
"""
if not (start_pct <= pct <= end_pct) or start_pct > end_pct:
return 0.0
if pct < fade_start:
return 1.0
scaling_pct = 1.0 - ((pct - fade_start) / (end_pct - fade_start))
return max(fade_cap, scaling_pct)
def scale_samples(
samples,
width,
height,
mode="bicubic",
sigma=None, # noqa: ARG001
):
"""#### Scale samples to the specified width and height.
#### Args:
- `samples` (torch.Tensor): The input samples.
- `width` (int): The target width.
- `height` (int): The target height.
- `mode` (str, optional): The scaling mode. Defaults to "bicubic".
- `sigma` (Optional[float], optional): The sigma value. Defaults to None.
#### Returns:
- `torch.Tensor`: The scaled samples.
"""
if mode == "bislerp":
return upscale.bislerp(samples, width, height)
return torchf.interpolate(samples, size=(height, width), mode=mode)
class Integrations:
"""#### Class for managing integrations."""
class Integration(NamedTuple):
key: str
module_name: str
handler: Callable | None = None
def __init__(self):
"""#### Initialize the Integrations class."""
self.initialized = False
self.modules = {}
self.init_handlers = []
self.handlers = []
def __getitem__(self, key):
"""#### Get a module by key.
#### Args:
- `key` (str): The key.
#### Returns:
- `ModuleType`: The module.
"""
return self.modules[key]
def __contains__(self, key):
"""#### Check if a module is in the integrations.
#### Args:
- `key` (str): The key.
#### Returns:
- `bool`: Whether the module is in the integrations.
"""
return key in self.modules
def __getattr__(self, key):
"""#### Get a module by attribute.
#### Args:
- `key` (str): The key.
#### Returns:
- `Optional[ModuleType]`: The module if found, otherwise None.
"""
return self.modules.get(key)
@staticmethod
def get_custom_node(name: str) -> ModuleType | None:
"""#### Get a custom node by name.
#### Args:
- `name` (str): The name of the custom node.
#### Returns:
- `Optional[ModuleType]`: The custom node if found, otherwise None.
"""
module_key = f"custom_nodes.{name}"
with contextlib.suppress(StopIteration):
spec = importlib.util.find_spec(module_key)
if spec is None:
return None
return next(
v
for v in sys.modules.copy().values()
if hasattr(v, "__spec__")
and v.__spec__ is not None
and v.__spec__.origin == spec.origin
)
return None
def register_init_handler(self, handler):
"""#### Register an initialization handler.
#### Args:
- `handler` (Callable): The handler.
"""
self.init_handlers.append(handler)
def register_integration(self, key: str, module_name: str, handler=None) -> None:
"""#### Register an integration.
#### Args:
- `key` (str): The key.
- `module_name` (str): The module name.
- `handler` (Optional[Callable], optional): The handler. Defaults to None.
"""
if self.initialized:
raise ValueError(
"Internal error: Cannot register integration after initialization",
)
if any(item[0] == key or item[1] == module_name for item in self.handlers):
errstr = (
f"Module {module_name} ({key}) already in integration handlers list!"
)
raise ValueError(errstr)
self.handlers.append(self.Integration(key, module_name, handler))
def initialize(self) -> None:
"""#### Initialize the integrations."""
if self.initialized:
return
self.initialized = True
for ih in self.handlers:
module = self.get_custom_node(ih.module_name)
if module is None:
continue
if ih.handler is not None:
module = ih.handler(module)
if module is not None:
self.modules[ih.key] = module
for init_handler in self.init_handlers:
init_handler(self)
class JHDIntegrations(Integrations):
"""#### Class for managing JHD integrations."""
def __init__(self, *args: list, **kwargs: dict):
"""#### Initialize the JHDIntegrations class."""
super().__init__(*args, **kwargs)
self.register_integration("bleh", "ComfyUI-bleh", self.bleh_integration)
self.register_integration("freeu_advanced", "FreeU_Advanced")
@classmethod
def bleh_integration(cls, bleh: ModuleType) -> ModuleType | None:
"""#### Integrate with BLEH.
#### Args:
- `bleh` (ModuleType): The BLEH module.
#### Returns:
- `Optional[ModuleType]`: The integrated BLEH module if successful, otherwise None.
"""
bleh_version = getattr(bleh, "BLEH_VERSION", -1)
if bleh_version < 0:
return None
return bleh
MODULES = JHDIntegrations()
class IntegratedNode(type):
"""#### Metaclass for integrated nodes."""
@staticmethod
def wrap_INPUT_TYPES(orig_method: Callable, *args: list, **kwargs: dict) -> dict:
"""#### Wrap the INPUT_TYPES method to initialize modules.
#### Args:
- `orig_method` (Callable): The original method.
- `args` (list): The arguments.
- `kwargs` (dict): The keyword arguments.
#### Returns:
- `dict`: The result of the original method.
"""
MODULES.initialize()
return orig_method(*args, **kwargs)
def __new__(cls: type, name: str, bases: tuple, attrs: dict) -> object:
"""#### Create a new instance of the class.
#### Args:
- `name` (str): The name of the class.
- `bases` (tuple): The base classes.
- `attrs` (dict): The attributes.
#### Returns:
- `object`: The new instance.
"""
obj = type.__new__(cls, name, bases, attrs)
if hasattr(obj, "INPUT_TYPES"):
obj.INPUT_TYPES = partial(cls.wrap_INPUT_TYPES, obj.INPUT_TYPES)
return obj
def init_integrations(integrations) -> None:
"""#### Initialize integrations.
#### Args:
- `integrations` (Integrations): The integrations object.
"""
global scale_samples, UPSCALE_METHODS # noqa: PLW0603
ext_bleh = integrations.bleh
if ext_bleh is None:
return
bleh_latentutils = getattr(ext_bleh.py, "latent_utils", None)
if bleh_latentutils is None:
return
bleh_version = getattr(ext_bleh, "BLEH_VERSION", -1)
UPSCALE_METHODS = bleh_latentutils.UPSCALE_METHODS
if bleh_version >= 0:
scale_samples = bleh_latentutils.scale_samples
return
def scale_samples_wrapped(*args: list, sigma=None, **kwargs: dict): # noqa: ARG001
"""#### Wrap the scale_samples method.
#### Args:
- `args` (list): The arguments.
- `sigma` (Optional[float], optional): The sigma value. Defaults to None.
- `kwargs` (dict): The keyword arguments.
#### Returns:
- `Any`: The result of the scale_samples method.
"""
return bleh_latentutils.scale_samples(*args, **kwargs)
scale_samples = scale_samples_wrapped
MODULES.register_init_handler(init_integrations)
__all__ = (
"UPSCALE_METHODS",
"check_time",
"convert_time",
"get_sigma",
"guess_model_type",
"parse_blocks",
"rescale_size",
"scale_samples",
) |