Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,152 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
from __future__ import annotations
import itertools
import math
from time import time
from typing import Any, NamedTuple
from modules.Model import ModelPatcher
import torch
from . import utils
from .utils import (
IntegratedNode,
ModelType,
StrEnum,
TimeMode,
block_to_num,
check_time,
convert_time,
get_sigma,
guess_model_type,
logger,
parse_blocks,
rescale_size,
scale_samples,
)
F = torch.nn.functional
SCALE_METHODS = ()
REVERSE_SCALE_METHODS = ()
# Taken from https://github.com/blepping/comfyui_jankhidiffusion
def init_integrations(_integrations) -> None:
"""#### Initialize integrations.
#### Args:
- `_integrations` (Any): The integrations object.
"""
global scale_samples, SCALE_METHODS, REVERSE_SCALE_METHODS # noqa: PLW0603
SCALE_METHODS = ("disabled", "skip", *utils.UPSCALE_METHODS)
REVERSE_SCALE_METHODS = utils.UPSCALE_METHODS
scale_samples = utils.scale_samples
utils.MODULES.register_init_handler(init_integrations)
DEFAULT_WARN_INTERVAL = 60
class Preset(NamedTuple):
"""#### Class representing a preset configuration.
#### Args:
- `input_blocks` (str): The input blocks.
- `middle_blocks` (str): The middle blocks.
- `output_blocks` (str): The output blocks.
- `time_mode` (TimeMode): The time mode.
- `start_time` (float): The start time.
- `end_time` (float): The end time.
- `scale_mode` (str): The scale mode.
- `reverse_scale_mode` (str): The reverse scale mode.
"""
input_blocks: str = ""
middle_blocks: str = ""
output_blocks: str = ""
time_mode: TimeMode = TimeMode.PERCENT
start_time: float = 0.2
end_time: float = 1.0
scale_mode: str = "nearest-exact"
reverse_scale_mode: str = "nearest-exact"
@property
def as_dict(self):
"""#### Convert the preset to a dictionary.
#### Returns:
- `Dict[str, Any]`: The preset as a dictionary.
"""
return {k: getattr(self, k) for k in self._fields}
@property
def pretty_blocks(self):
"""#### Get a pretty string representation of the blocks.
#### Returns:
- `str`: The pretty string representation of the blocks.
"""
blocks = (self.input_blocks, self.middle_blocks, self.output_blocks)
return " / ".join(b or "none" for b in blocks)
SIMPLE_PRESETS = {
ModelType.SD15: Preset(input_blocks="1,2", output_blocks="11,10,9"),
ModelType.SDXL: Preset(input_blocks="4,5", output_blocks="3,4,5"),
}
class WindowSize(NamedTuple):
"""#### Class representing the window size.
#### Args:
- `height` (int): The height of the window.
- `width` (int): The width of the window.
"""
height: int
width: int
@property
def sum(self):
"""#### Get the sum of the height and width.
#### Returns:
- `int`: The sum of the height and width.
"""
return self.height * self.width
def __neg__(self):
"""#### Negate the window size.
#### Returns:
- `WindowSize`: The negated window size.
"""
return self.__class__(-self.height, -self.width)
class ShiftSize(WindowSize):
"""#### Class representing the shift size."""
pass
class LastShiftMode(StrEnum):
"""#### Enum for the last shift mode."""
GLOBAL = "global"
BLOCK = "block"
BOTH = "both"
IGNORE = "ignore"
class LastShiftStrategy(StrEnum):
"""#### Enum for the last shift strategy."""
INCREMENT = "increment"
DECREMENT = "decrement"
RETRY = "retry"
class Config(NamedTuple):
"""#### Class representing the configuration.
#### Args:
- `start_sigma` (float): The start sigma.
- `end_sigma` (float): The end sigma.
- `use_blocks` (set): The blocks to use.
- `scale_mode` (str): The scale mode.
- `reverse_scale_mode` (str): The reverse scale mode.
- `silent` (bool): Whether to disable log warnings.
- `last_shift_mode` (LastShiftMode): The last shift mode.
- `last_shift_strategy` (LastShiftStrategy): The last shift strategy.
- `pre_window_multiplier` (float): The pre-window multiplier.
- `post_window_multiplier` (float): The post-window multiplier.
- `pre_window_reverse_multiplier` (float): The pre-window reverse multiplier.
- `post_window_reverse_multiplier` (float): The post-window reverse multiplier.
- `force_apply_attn2` (bool): Whether to force apply attention 2.
- `rescale_search_tolerance` (int): The rescale search tolerance.
- `verbose` (int): The verbosity level.
"""
start_sigma: float
end_sigma: float
use_blocks: set
scale_mode: str = "nearest-exact"
reverse_scale_mode: str = "nearest-exact"
# Allows disabling the log warning for incompatible sizes.
silent: bool = False
# Mode for trying to avoid using the same window size consecutively.
last_shift_mode: LastShiftMode = LastShiftMode.GLOBAL
# Strategy to use when avoiding a duplicate window size.
last_shift_strategy: LastShiftStrategy = LastShiftStrategy.INCREMENT
# Allows multiplying the tensor going into/out of the window or window reverse effect.
pre_window_multiplier: float = 1.0
post_window_multiplier: float = 1.0
pre_window_reverse_multiplier: float = 1.0
post_window_reverse_multiplier: float = 1.0
force_apply_attn2: bool = False
rescale_search_tolerance: int = 1
verbose: int = 0
@classmethod
def build(
cls,
*,
ms: object,
input_blocks: str | list[int],
middle_blocks: str | list[int],
output_blocks: str | list[int],
time_mode: str | TimeMode,
start_time: float,
end_time: float,
**kwargs: dict,
) -> object:
"""#### Build a configuration object.
#### Args:
- `ms` (object): The model sampling object.
- `input_blocks` (str | List[int]): The input blocks.
- `middle_blocks` (str | List[int]): The middle blocks.
- `output_blocks` (str | List[int]): The output blocks.
- `time_mode` (str | TimeMode): The time mode.
- `start_time` (float): The start time.
- `end_time` (float): The end time.
- `kwargs` (Dict[str, Any]): Additional keyword arguments.
#### Returns:
- `Config`: The configuration object.
"""
time_mode: TimeMode = TimeMode(time_mode)
start_sigma, end_sigma = convert_time(ms, time_mode, start_time, end_time)
input_blocks, middle_blocks, output_blocks = itertools.starmap(
parse_blocks,
(
("input", input_blocks),
("middle", middle_blocks),
("output", output_blocks),
),
)
return cls.__new__(
cls,
start_sigma=start_sigma,
end_sigma=end_sigma,
use_blocks=input_blocks | middle_blocks | output_blocks,
**kwargs,
)
@staticmethod
def maybe_multiply(
t: torch.Tensor,
multiplier: float = 1.0,
post: bool = False,
) -> torch.Tensor:
"""#### Multiply a tensor by a multiplier.
#### Args:
- `t` (torch.Tensor): The input tensor.
- `multiplier` (float, optional): The multiplier. Defaults to 1.0.
- `post` (bool, optional): Whether to multiply in-place. Defaults to False.
#### Returns:
- `torch.Tensor`: The multiplied tensor.
"""
if multiplier == 1.0:
return t
return t.mul_(multiplier) if post else t * multiplier
class State:
"""#### Class representing the state.
#### Args:
- `config` (Config): The configuration object.
"""
__slots__ = (
"config",
"last_block",
"last_shift",
"last_shifts",
"last_sigma",
"last_warned",
"window_args",
)
def __init__(self, config):
self.config = config
self.last_warned = None
self.reset()
def reset(self):
"""#### Reset the state."""
self.window_args = None
self.last_sigma = None
self.last_block = None
self.last_shift = None
self.last_shifts = {}
@property
def pretty_last_block(self) -> str:
"""#### Get a pretty string representation of the last block.
#### Returns:
- `str`: The pretty string representation of the last block.
"""
if self.last_block is None:
return "unknown"
bt, bnum = self.last_block
attstr = "" if not self.config.force_apply_attn2 else "attn2."
btstr = ("in", "mid", "out")[bt]
return f"{attstr}{btstr}.{bnum}"
def maybe_warning(self, s):
"""#### Log a warning if necessary.
#### Args:
- `s` (str): The warning message.
"""
if self.config.silent:
return
now = time()
if (
self.config.verbose >= 2
or self.last_warned is None
or now - self.last_warned >= DEFAULT_WARN_INTERVAL
):
logger.warning(
f"** jankhidiffusion: MSW-MSA attention({self.pretty_last_block}): {s}",
)
self.last_warned = now
def __repr__(self):
"""#### Get a string representation of the state.
#### Returns:
- `str`: The string representation of the state.
"""
return f"<MSWMSAAttentionState:last_sigma={self.last_sigma}, last_block={self.pretty_last_block}, last_shift={self.last_shift}, last_shifts={self.last_shifts}>"
class ApplyMSWMSAAttention(metaclass=IntegratedNode):
"""#### Class for applying MSW-MSA attention."""
RETURN_TYPES = ("MODEL",)
OUTPUT_TOOLTIPS = ("Model patched with the MSW-MSA attention effect.",)
FUNCTION = "patch"
CATEGORY = "model_patches/unet"
DESCRIPTION = "This node applies an attention patch which _may_ slightly improve quality especially when generating at high resolutions. It is a large performance increase on SD1.x, may improve performance on SDXL. This is the advanced version of the node with more parameters, use ApplyMSWMSAAttentionSimple if this seems too complex. NOTE: Only supports SD1.x, SD2.x and SDXL."
@classmethod
def INPUT_TYPES(cls):
"""#### Get the input types for the class.
#### Returns:
- `Dict[str, Any]`: The input types.
"""
return {
"required": {
"input_blocks": (
"STRING",
{
"default": "1,2",
"tooltip": "Comma-separated list of input blocks to patch. Default is for SD1.x, you can try 4,5 for SDXL",
},
),
"middle_blocks": (
"STRING",
{
"default": "",
"tooltip": "Comma-separated list of middle blocks to patch. Generally not recommended.",
},
),
"output_blocks": (
"STRING",
{
"default": "9,10,11",
"tooltip": "Comma-separated list of output blocks to patch. Default is for SD1.x, you can try 3,4,5 for SDXL",
},
),
"time_mode": (
tuple(str(val) for val in TimeMode),
{
"default": "percent",
"tooltip": "Time mode controls how to interpret the values in start_time and end_time.",
},
),
"start_time": (
"FLOAT",
{
"default": 0.0,
"min": 0.0,
"max": 999.0,
"round": False,
"step": 0.01,
"tooltip": "Time the MSW-MSA attention effect starts applying - value is inclusive.",
},
),
"end_time": (
"FLOAT",
{
"default": 1.0,
"min": 0.0,
"max": 999.0,
"round": False,
"step": 0.01,
"tooltip": "Time the MSW-MSA attention effect ends - value is inclusive.",
},
),
"model": (
"MODEL",
{
"tooltip": "Model to patch with the MSW-MSA attention effect.",
},
),
},
"optional": {
"yaml_parameters": (
"STRING",
{
"tooltip": "Allows specifying custom parameters via YAML. You can also override any of the normal parameters by key. This input can be converted into a multiline text widget. See main README for possible options. Note: When specifying paramaters this way, there is very little error checking.",
"dynamicPrompts": False,
"multiline": True,
"defaultInput": True,
},
),
},
}
# reference: https://github.com/microsoft/Swin-Transformer
# Window functions adapted from https://github.com/megvii-research/HiDiffusion
@staticmethod
def window_partition(
x: torch.Tensor,
state: State,
window_index: int,
) -> torch.Tensor:
"""#### Partition a tensor into windows.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `state` (State): The state object.
- `window_index` (int): The window index.
#### Returns:
- `torch.Tensor`: The partitioned tensor.
"""
config = state.config
scale_mode = config.scale_mode
x = config.maybe_multiply(x, config.pre_window_multiplier)
window_size, shift_size, height, width = state.window_args[window_index]
do_rescale = (height % 2 + width % 2) != 0
if do_rescale:
if scale_mode == "skip":
state.maybe_warning(
"Incompatible latent size - skipping MSW-MSA attention.",
)
return x
if scale_mode == "disabled":
state.maybe_warning(
"Incompatible latent size - trying to proceed anyway. This may result in an error.",
)
do_rescale = False
else:
state.maybe_warning(
"Incompatible latent size - applying scaling workaround. Note: This may reduce quality - use resolutions that are multiples of 64 when possible.",
)
batch, _features, channels = x.shape
wheight, wwidth = window_size
x = x.view(batch, height, width, channels)
if do_rescale:
x = (
scale_samples(
x.permute(0, 3, 1, 2).contiguous(),
wwidth * 2,
wheight * 2,
mode=scale_mode,
sigma=state.last_sigma,
)
.permute(0, 2, 3, 1)
.contiguous()
)
if shift_size.sum > 0:
x = torch.roll(x, shifts=-shift_size, dims=(1, 2))
x = x.view(batch, 2, wheight, 2, wwidth, channels)
windows = (
x.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.view(-1, window_size.height, window_size.width, channels)
)
return config.maybe_multiply(
windows.view(-1, window_size.sum, channels),
config.post_window_multiplier,
)
@staticmethod
def window_reverse(
windows: torch.Tensor,
state: State,
window_index: int = 0,
) -> torch.Tensor:
"""#### Reverse the window partitioning of a tensor.
#### Args:
- `windows` (torch.Tensor): The input windows tensor.
- `state` (State): The state object.
- `window_index` (int, optional): The window index. Defaults to 0.
#### Returns:
- `torch.Tensor`: The reversed tensor.
"""
config = state.config
windows = config.maybe_multiply(windows, config.pre_window_reverse_multiplier)
window_size, shift_size, height, width = state.window_args[window_index]
do_rescale = (height % 2 + width % 2) != 0
if do_rescale:
if config.scale_mode == "skip":
return windows
if config.scale_mode == "disabled":
do_rescale = False
batch, _features, channels = windows.shape
wheight, wwidth = window_size
windows = windows.view(-1, wheight, wwidth, channels)
batch = int(windows.shape[0] / 4)
x = windows.view(batch, 2, 2, wheight, wwidth, -1)
x = (
x.permute(0, 1, 3, 2, 4, 5)
.contiguous()
.view(batch, wheight * 2, wwidth * 2, -1)
)
if shift_size.sum > 0:
x = torch.roll(x, shifts=shift_size, dims=(1, 2))
if do_rescale:
x = (
scale_samples(
x.permute(0, 3, 1, 2).contiguous(),
width,
height,
mode=config.reverse_scale_mode,
sigma=state.last_sigma,
)
.permute(0, 2, 3, 1)
.contiguous()
)
return config.maybe_multiply(
x.view(batch, height * width, channels),
config.post_window_reverse_multiplier,
)
@staticmethod
def get_window_args(
config: Config,
n: torch.Tensor,
orig_shape: tuple,
shift: int,
) -> tuple[WindowSize, ShiftSize, int, int]:
"""#### Get window arguments for MSW-MSA attention.
#### Args:
- `config` (Config): The configuration object.
- `n` (torch.Tensor): The input tensor.
- `orig_shape` (tuple): The original shape of the tensor.
- `shift` (int): The shift value.
#### Returns:
- `tuple[WindowSize, ShiftSize, int, int]`: The window size, shift size, height, and width.
"""
_batch, features, _channels = n.shape
orig_height, orig_width = orig_shape[-2:]
width, height = rescale_size(
orig_width,
orig_height,
features,
tolerance=config.rescale_search_tolerance,
)
# if (height, width) != (orig_height, orig_width):
# print(
# f"\nRESC: features={features}, orig={(orig_height, orig_width)}, new={(height, width)}",
# )
wheight, wwidth = math.ceil(height / 2), math.ceil(width / 2)
if shift == 0:
shift_size = ShiftSize(0, 0)
elif shift == 1:
shift_size = ShiftSize(wheight // 4, wwidth // 4)
elif shift == 2:
shift_size = ShiftSize(wheight // 4 * 2, wwidth // 4 * 2)
else:
shift_size = ShiftSize(wheight // 4 * 3, wwidth // 4 * 3)
return (WindowSize(wheight, wwidth), shift_size, height, width)
@staticmethod
def get_shift(
curr_block: tuple,
state: State,
*,
shift_count=4,
) -> int:
"""#### Get the shift value for MSW-MSA attention.
#### Args:
- `curr_block` (tuple): The current block.
- `state` (State): The state object.
- `shift_count` (int, optional): The shift count. Defaults to 4.
#### Returns:
- `int`: The shift value.
"""
mode = state.config.last_shift_mode
strat = state.config.last_shift_strategy
shift = int(torch.rand(1, device="cpu").item() * shift_count)
block_last_shift = state.last_shifts.get(curr_block)
last_shift = state.last_shift
if mode == LastShiftMode.BOTH:
avoid = {block_last_shift, last_shift}
elif mode == LastShiftMode.BLOCK:
avoid = {block_last_shift}
elif mode == LastShiftMode.GLOBAL:
avoid = {last_shift}
else:
avoid = {}
if shift in avoid:
if strat == LastShiftStrategy.DECREMENT:
while shift in avoid:
shift -= 1
if shift < 0:
shift = shift_count - 1
elif strat == LastShiftStrategy.RETRY:
while shift in avoid:
shift = int(torch.rand(1, device="cpu").item() * shift_count)
else:
# Increment
while shift in avoid:
shift = (shift + 1) % shift_count
return shift
@classmethod
def patch(
cls,
*,
model: ModelPatcher.ModelPatcher,
yaml_parameters: str | None = None,
**kwargs: dict[str, Any],
) -> tuple[ModelPatcher.ModelPatcher]:
"""#### Patch the model with MSW-MSA attention.
#### Args:
- `model` (ModelPatcher.ModelPatcher): The model patcher.
- `yaml_parameters` (str | None, optional): The YAML parameters. Defaults to None.
- `kwargs` (dict[str, Any]): Additional keyword arguments.
#### Returns:
- `tuple[ModelPatcher.ModelPatcher]`: The patched model.
"""
if yaml_parameters:
import yaml # noqa: PLC0415
extra_params = yaml.safe_load(yaml_parameters)
if extra_params is None:
pass
elif not isinstance(extra_params, dict):
raise ValueError(
"MSWMSAAttention: yaml_parameters must either be null or an object",
)
else:
kwargs |= extra_params
config = Config.build(
ms=model.get_model_object("model_sampling"),
**kwargs,
)
if not config.use_blocks:
return (model,)
if config.verbose:
logger.info(
f"** jankhidiffusion: MSW-MSA Attention: Using config: {config}",
)
model = model.clone()
state = State(config)
def attn_patch(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
extra_options: dict,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""#### Apply attention patch.
#### Args:
- `q` (torch.Tensor): The query tensor.
- `k` (torch.Tensor): The key tensor.
- `v` (torch.Tensor): The value tensor.
- `extra_options` (dict): Additional options.
#### Returns:
- `tuple[torch.Tensor, torch.Tensor, torch.Tensor]`: The patched tensors.
"""
state.window_args = None
sigma = get_sigma(extra_options)
block = extra_options.get("block", ("missing", 0))
curr_block = block_to_num(*block)
if state.last_sigma is not None and sigma > state.last_sigma:
# logging.warning(
# f"Doing reset: block={block}, sigma={sigma}, state={state}",
# )
state.reset()
state.last_block = curr_block
state.last_sigma = sigma
if block not in config.use_blocks or not check_time(
sigma,
config.start_sigma,
config.end_sigma,
):
return q, k, v
orig_shape = extra_options["original_shape"]
# MSW-MSA
shift = cls.get_shift(curr_block, state)
state.last_shifts[curr_block] = state.last_shift = shift
try:
# get_window_args() can fail with ValueError in rescale_size() for some weird resolutions/aspect ratios
# so we catch it here and skip MSW-MSA attention in that case.
state.window_args = tuple(
cls.get_window_args(config, x, orig_shape, shift)
if x is not None
else None
for x in (q, k, v)
)
attn_parts = (q,) if q is not None and q is k and q is v else (q, k, v)
result = tuple(
cls.window_partition(tensor, state, idx)
if tensor is not None
else None
for idx, tensor in enumerate(attn_parts)
)
except (RuntimeError, ValueError) as exc:
logger.warning(
f"** jankhidiffusion: Exception applying MSW-MSA attention: Incompatible model patches or bad resolution. Try using resolutions that are multiples of 64 or set scale/reverse_scale modes to something other than disabled. Original exception: {exc}",
)
state.window_args = None
return q, k, v
return result * 3 if len(result) == 1 else result
def attn_output_patch(n: torch.Tensor, extra_options: dict) -> torch.Tensor:
"""#### Apply attention output patch.
#### Args:
- `n` (torch.Tensor): The input tensor.
- `extra_options` (dict): Additional options.
#### Returns:
- `torch.Tensor`: The patched tensor.
"""
if state.window_args is None or state.last_block != block_to_num(
*extra_options.get("block", ("missing", 0)),
):
state.window_args = None
return n
result = cls.window_reverse(n, state)
state.window_args = None
return result
if not config.force_apply_attn2:
model.set_model_attn1_patch(attn_patch)
model.set_model_attn1_output_patch(attn_output_patch)
else:
model.set_model_attn2_patch(attn_patch)
model.set_model_attn2_output_patch(attn_output_patch)
return (model,)
class ApplyMSWMSAAttentionSimple(metaclass=IntegratedNode):
"""Class representing a simplified version of MSW-MSA Attention."""
RETURN_TYPES = ("MODEL",)
OUTPUT_TOOLTIPS = ("Model patched with the MSW-MSA attention effect.",)
FUNCTION = "go"
CATEGORY = "model_patches/unet"
DESCRIPTION = "This node applies an attention patch which _may_ slightly improve quality especially when generating at high resolutions. It is a large performance increase on SD1.x, may improve performance on SDXL. This is the simplified version of the node with less parameters. Use ApplyMSWMSAAttention if you require more control. NOTE: Only supports SD1.x, SD2.x and SDXL."
@classmethod
def INPUT_TYPES(cls) -> dict:
"""#### Get input types for the class.
#### Returns:
- `dict`: The input types.
"""
return {
"required": {
"model_type": (
("auto", "SD15", "SDXL"),
{
"tooltip": "Model type being patched. Generally safe to leave on auto. Choose SD15 for SD 1.4, SD 2.x.",
},
),
"model": (
"MODEL",
{
"tooltip": "Model to patch with the MSW-MSA attention effect.",
},
),
},
}
@classmethod
def go(
cls,
model_type: str | ModelType,
model: ModelPatcher.ModelPatcher,
) -> tuple[ModelPatcher.ModelPatcher]:
"""#### Apply the MSW-MSA attention patch.
#### Args:
- `model_type` (str | ModelType): The model type.
- `model` (ModelPatcher.ModelPatcher): The model patcher.
#### Returns:
- `tuple[ModelPatcher.ModelPatcher]`: The patched model.
"""
if model_type == "auto":
guessed_model_type = guess_model_type(model)
if guessed_model_type not in SIMPLE_PRESETS:
raise RuntimeError("Unable to guess model type")
model_type = guessed_model_type
else:
model_type = ModelType(model_type)
preset = SIMPLE_PRESETS.get(model_type)
if preset is None:
errstr = f"Unknown model type {model_type!s}"
raise ValueError(errstr)
logger.info(
f"** ApplyMSWMSAAttentionSimple: Using preset {model_type!s}: in/mid/out blocks [{preset.pretty_blocks}], start/end percent {preset.start_time:.2}/{preset.end_time:.2}",
)
return ApplyMSWMSAAttention.patch(model=model, **preset.as_dict)
__all__ = ("ApplyMSWMSAAttention", "ApplyMSWMSAAttentionSimple") |