Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,468 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from modules.Device import Device
import torch
from typing import List, Tuple, Any
def get_models_from_cond(cond: dict, model_type: str) -> List[object]:
"""#### Get models from a condition.
#### Args:
- `cond` (dict): The condition.
- `model_type` (str): The model type.
#### Returns:
- `List[object]`: The list of models.
"""
models = []
for c in cond:
if model_type in c:
models += [c[model_type]]
return models
def get_additional_models(conds: dict, dtype: torch.dtype) -> Tuple[List[object], int]:
"""#### Load additional models in conditioning.
#### Args:
- `conds` (dict): The conditions.
- `dtype` (torch.dtype): The data type.
#### Returns:
- `Tuple[List[object], int]`: The list of models and the inference memory.
"""
cnets = []
gligen = []
for k in conds:
cnets += get_models_from_cond(conds[k], "control")
gligen += get_models_from_cond(conds[k], "gligen")
control_nets = set(cnets)
inference_memory = 0
control_models = []
for m in control_nets:
control_models += m.get_models()
inference_memory += m.inference_memory_requirements(dtype)
gligen = [x[1] for x in gligen]
models = control_models + gligen
return models, inference_memory
def prepare_sampling(
model: object, noise_shape: Tuple[int], conds: dict, flux_enabled: bool = False
) -> Tuple[object, dict, List[object]]:
"""#### Prepare the model for sampling.
#### Args:
- `model` (object): The model.
- `noise_shape` (Tuple[int]): The shape of the noise.
- `conds` (dict): The conditions.
- `flux_enabled` (bool, optional): Whether flux is enabled. Defaults to False.
#### Returns:
- `Tuple[object, dict, List[object]]`: The prepared model, conditions, and additional models.
"""
real_model = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
memory_required = (
model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]))
+ inference_memory
)
minimum_memory_required = (
model.memory_required([noise_shape[0]] + list(noise_shape[1:]))
+ inference_memory
)
Device.load_models_gpu(
[model] + models,
memory_required=memory_required,
minimum_memory_required=minimum_memory_required,
flux_enabled=flux_enabled,
)
real_model = model.model
return real_model, conds, models
def cleanup_additional_models(models: List[object]) -> None:
"""#### Clean up additional models.
#### Args:
- `models` (List[object]): The list of models.
"""
for m in models:
if hasattr(m, "cleanup"):
m.cleanup()
def cleanup_models(conds: dict, models: List[object]) -> None:
"""#### Clean up the models after sampling.
#### Args:
- `conds` (dict): The conditions.
- `models` (List[object]): The list of models.
"""
cleanup_additional_models(models)
control_cleanup = []
for k in conds:
control_cleanup += get_models_from_cond(conds[k], "control")
cleanup_additional_models(set(control_cleanup))
def cond_equal_size(c1: Any, c2: Any) -> bool:
"""#### Check if two conditions have equal size.
#### Args:
- `c1` (Any): The first condition.
- `c2` (Any): The second condition.
#### Returns:
- `bool`: Whether the conditions have equal size.
"""
if c1 is c2:
return True
if c1.keys() != c2.keys():
return False
return True
def can_concat_cond(c1: Any, c2: Any) -> bool:
"""#### Check if two conditions can be concatenated.
#### Args:
- `c1` (Any): The first condition.
- `c2` (Any): The second condition.
#### Returns:
- `bool`: Whether the conditions can be concatenated.
"""
if c1.input_x.shape != c2.input_x.shape:
return False
def objects_concatable(obj1, obj2):
"""#### Check if two objects can be concatenated."""
if (obj1 is None) != (obj2 is None):
return False
if obj1 is not None:
if obj1 is not obj2:
return False
return True
if not objects_concatable(c1.control, c2.control):
return False
if not objects_concatable(c1.patches, c2.patches):
return False
return cond_equal_size(c1.conditioning, c2.conditioning)
def cond_cat(c_list: List[dict]) -> dict:
"""#### Concatenate a list of conditions.
#### Args:
- `c_list` (List[dict]): The list of conditions.
#### Returns:
- `dict`: The concatenated conditions.
"""
temp = {}
for x in c_list:
for k in x:
cur = temp.get(k, [])
cur.append(x[k])
temp[k] = cur
out = {}
for k in temp:
conds = temp[k]
out[k] = conds[0].concat(conds[1:])
return out
def create_cond_with_same_area_if_none(conds: List[dict], c: dict) -> None:
"""#### Create a condition with the same area if none exists.
#### Args:
- `conds` (List[dict]): The list of conditions.
- `c` (dict): The condition.
"""
if "area" not in c:
return
c_area = c["area"]
smallest = None
for x in conds:
if "area" in x:
a = x["area"]
if c_area[2] >= a[2] and c_area[3] >= a[3]:
if a[0] + a[2] >= c_area[0] + c_area[2]:
if a[1] + a[3] >= c_area[1] + c_area[3]:
if smallest is None:
smallest = x
elif "area" not in smallest:
smallest = x
else:
if smallest["area"][0] * smallest["area"][1] > a[0] * a[1]:
smallest = x
else:
if smallest is None:
smallest = x
if smallest is None:
return
if "area" in smallest:
if smallest["area"] == c_area:
return
out = c.copy()
out["model_conds"] = smallest[
"model_conds"
].copy()
conds += [out]
|