Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,320 Bytes
d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e d9a2e19 cfe609e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import torch
from modules.Utilities import util
from modules.Device import Device
from modules.cond import cond_util
from modules.sample import ksampler_util
class CONDRegular:
"""#### Class representing a regular condition."""
def __init__(self, cond: torch.Tensor):
"""#### Initialize the CONDRegular class.
#### Args:
- `cond` (torch.Tensor): The condition tensor.
"""
self.cond = cond
def _copy_with(self, cond: torch.Tensor) -> "CONDRegular":
"""#### Copy the condition with a new condition.
#### Args:
- `cond` (torch.Tensor): The new condition.
#### Returns:
- `CONDRegular`: The copied condition.
"""
return self.__class__(cond)
def process_cond(
self, batch_size: int, device: torch.device, **kwargs
) -> "CONDRegular":
"""#### Process the condition.
#### Args:
- `batch_size` (int): The batch size.
- `device` (torch.device): The device.
#### Returns:
- `CONDRegular`: The processed condition.
"""
return self._copy_with(
util.repeat_to_batch_size(self.cond, batch_size).to(device)
)
def can_concat(self, other: "CONDRegular") -> bool:
"""#### Check if conditions can be concatenated.
#### Args:
- `other` (CONDRegular): The other condition.
#### Returns:
- `bool`: True if conditions can be concatenated, False otherwise.
"""
if self.cond.shape != other.cond.shape:
return False
return True
def concat(self, others: list) -> torch.Tensor:
"""#### Concatenate conditions.
#### Args:
- `others` (list): The list of other conditions.
#### Returns:
- `torch.Tensor`: The concatenated conditions.
"""
conds = [self.cond]
for x in others:
conds.append(x.cond)
return torch.cat(conds)
class CONDCrossAttn(CONDRegular):
"""#### Class representing a cross-attention condition."""
def can_concat(self, other: "CONDRegular") -> bool:
"""#### Check if conditions can be concatenated.
#### Args:
- `other` (CONDRegular): The other condition.
#### Returns:
- `bool`: True if conditions can be concatenated, False otherwise.
"""
s1 = self.cond.shape
s2 = other.cond.shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: # these 2 cases should not happen
return False
mult_min = torch.lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if (
diff > 4
): # arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
return True
def concat(self, others: list) -> torch.Tensor:
"""Optimized version of cross-attention condition concatenation."""
conds = [self.cond]
shapes = [self.cond.shape[1]]
# Collect all conditions and their shapes
for x in others:
conds.append(x.cond)
shapes.append(x.cond.shape[1])
# Calculate LCM more efficiently
crossattn_max_len = util.lcm_of_list(shapes)
# Process and concat in one step where possible
if all(c.shape[1] == shapes[0] for c in conds):
# All same length, simple concatenation
return torch.cat(conds)
else:
# Process conditions that need repeating
out = []
for c in conds:
if c.shape[1] < crossattn_max_len:
repeat_factor = crossattn_max_len // c.shape[1]
# Use repeat instead of individual operations
c = c.repeat(1, repeat_factor, 1)
out.append(c)
return torch.cat(out)
def convert_cond(cond: list) -> list:
"""#### Convert conditions to cross-attention conditions.
#### Args:
- `cond` (list): The list of conditions.
#### Returns:
- `list`: The converted conditions.
"""
out = []
for c in cond:
temp = c[1].copy()
model_conds = temp.get("model_conds", {})
if c[0] is not None:
model_conds["c_crossattn"] = CONDCrossAttn(c[0])
temp["cross_attn"] = c[0]
temp["model_conds"] = model_conds
out.append(temp)
return out
def calc_cond_batch(
model: object,
conds: list,
x_in: torch.Tensor,
timestep: torch.Tensor,
model_options: dict,
) -> list:
"""#### Calculate the condition batch.
#### Args:
- `model` (object): The model.
- `conds` (list): The list of conditions.
- `x_in` (torch.Tensor): The input tensor.
- `timestep` (torch.Tensor): The timestep tensor.
- `model_options` (dict): The model options.
#### Returns:
- `list`: The calculated condition batch.
"""
out_conds = []
out_counts = []
to_run = []
for i in range(len(conds)):
out_conds.append(torch.zeros_like(x_in))
out_counts.append(torch.ones_like(x_in) * 1e-37)
cond = conds[i]
if cond is not None:
for x in cond:
p = ksampler_util.get_area_and_mult(x, x_in, timestep)
if p is None:
continue
to_run += [(p, i)]
while len(to_run) > 0:
first = to_run[0]
first_shape = first[0][0].shape
to_batch_temp = []
for x in range(len(to_run)):
if cond_util.can_concat_cond(to_run[x][0], first[0]):
to_batch_temp += [x]
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = Device.get_free_memory(x_in.device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[: len(to_batch_temp) // i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
to_batch = batch_amount
break
input_x = []
mult = []
c = []
cond_or_uncond = []
area = []
control = None
patches = None
for x in to_batch:
o = to_run.pop(x)
p = o[0]
input_x.append(p.input_x)
mult.append(p.mult)
c.append(p.conditioning)
area.append(p.area)
cond_or_uncond.append(o[1])
control = p.control
patches = p.patches
batch_chunks = len(cond_or_uncond)
input_x = torch.cat(input_x)
c = cond_util.cond_cat(c)
timestep_ = torch.cat([timestep] * batch_chunks)
if control is not None:
c["control"] = control.get_control(
input_x, timestep_, c, len(cond_or_uncond)
)
transformer_options = {}
if "transformer_options" in model_options:
transformer_options = model_options["transformer_options"].copy()
if patches is not None:
if "patches" in transformer_options:
cur_patches = transformer_options["patches"].copy()
for p in patches:
if p in cur_patches:
cur_patches[p] = cur_patches[p] + patches[p]
else:
cur_patches[p] = patches[p]
transformer_options["patches"] = cur_patches
else:
transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["sigmas"] = timestep
c["transformer_options"] = transformer_options
if "model_function_wrapper" in model_options:
output = model_options["model_function_wrapper"](
model.apply_model,
{
"input": input_x,
"timestep": timestep_,
"c": c,
"cond_or_uncond": cond_or_uncond,
},
).chunk(batch_chunks)
else:
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index]
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
# Vectorize the division at the end
for i in range(len(out_conds)):
# Inplace division is already efficient
out_conds[i].div_(out_counts[i]) # Using .div_ instead of /= for clarity
return out_conds
def encode_model_conds(
model_function: callable,
conds: list,
noise: torch.Tensor,
device: torch.device,
prompt_type: str,
**kwargs,
) -> list:
"""#### Encode model conditions.
#### Args:
- `model_function` (callable): The model function.
- `conds` (list): The list of conditions.
- `noise` (torch.Tensor): The noise tensor.
- `device` (torch.device): The device.
- `prompt_type` (str): The prompt type.
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `list`: The encoded model conditions.
"""
for t in range(len(conds)):
x = conds[t]
params = x.copy()
params["device"] = device
params["noise"] = noise
default_width = None
if len(noise.shape) >= 4: # TODO: 8 multiple should be set by the model
default_width = noise.shape[3] * 8
params["width"] = params.get("width", default_width)
params["height"] = params.get("height", noise.shape[2] * 8)
params["prompt_type"] = params.get("prompt_type", prompt_type)
for k in kwargs:
if k not in params:
params[k] = kwargs[k]
out = model_function(**params)
x = x.copy()
model_conds = x["model_conds"].copy()
for k in out:
model_conds[k] = out[k]
x["model_conds"] = model_conds
conds[t] = x
return conds
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
"""Optimized version that processes areas and masks more efficiently"""
for i in range(len(conditions)):
c = conditions[i]
# Process area
if "area" in c:
area = c["area"]
if area[0] == "percentage":
# Vectorized calculation of area dimensions
a = area[1:]
a_len = len(a) // 2
# Calculate all dimensions at once using tensor operations
dims_tensor = torch.tensor(dims, device="cpu")
first_part = torch.tensor(a[:a_len], device="cpu") * dims_tensor
second_part = torch.tensor(a[a_len:], device="cpu") * dims_tensor
# Convert to rounded integers and tuple
first_part = torch.max(
torch.ones_like(first_part), torch.round(first_part)
)
second_part = torch.round(second_part)
# Create the new area tuple
new_area = tuple(first_part.int().tolist()) + tuple(
second_part.int().tolist()
)
# Create a modified copy with the new area
modified = c.copy()
modified["area"] = new_area
conditions[i] = modified
# Process mask
if "mask" in c:
modified = c.copy()
mask = c["mask"].to(device=device)
# Combine dimension checks and unsqueeze operation
if len(mask.shape) == len(dims):
mask = mask.unsqueeze(0)
# Only interpolate if needed
if mask.shape[1:] != dims:
# Optimize interpolation by ensuring mask is in the right format for the operation
if len(mask.shape) == 3 and mask.shape[0] == 1:
# Already in the right format for interpolation
mask = torch.nn.functional.interpolate(
mask.unsqueeze(1),
size=dims,
mode="bilinear",
align_corners=False,
).squeeze(1)
else:
# Ensure mask is properly formatted for interpolation
mask = torch.nn.functional.interpolate(
mask
if len(mask.shape) > 3 and mask.shape[1] == 1
else mask.unsqueeze(1),
size=dims,
mode="bilinear",
align_corners=False,
).squeeze(1)
modified["mask"] = mask
conditions[i] = modified
def process_conds(
model: object,
noise: torch.Tensor,
conds: dict,
device: torch.device,
latent_image: torch.Tensor = None,
denoise_mask: torch.Tensor = None,
seed: int = None,
) -> dict:
"""#### Process conditions.
#### Args:
- `model` (object): The model.
- `noise` (torch.Tensor): The noise tensor.
- `conds` (dict): The conditions.
- `device` (torch.device): The device.
- `latent_image` (torch.Tensor, optional): The latent image tensor. Defaults to None.
- `denoise_mask` (torch.Tensor, optional): The denoise mask tensor. Defaults to None.
- `seed` (int, optional): The seed. Defaults to None.
#### Returns:
- `dict`: The processed conditions.
"""
for k in conds:
conds[k] = conds[k][:]
resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
for k in conds:
ksampler_util.calculate_start_end_timesteps(model, conds[k])
if hasattr(model, "extra_conds"):
for k in conds:
conds[k] = encode_model_conds(
model.extra_conds,
conds[k],
noise,
device,
k,
latent_image=latent_image,
denoise_mask=denoise_mask,
seed=seed,
)
# make sure each cond area has an opposite one with the same area
for k in conds:
for c in conds[k]:
for kk in conds:
if k != kk:
cond_util.create_cond_with_same_area_if_none(conds[kk], c)
for k in conds:
ksampler_util.pre_run_control(model, conds[k])
if "positive" in conds:
positive = conds["positive"]
for k in conds:
if k != "positive":
ksampler_util.apply_empty_x_to_equal_area(
list(
filter(
lambda c: c.get("control_apply_to_uncond", False) is True,
positive,
)
),
conds[k],
"control",
lambda cond_cnets, x: cond_cnets[x],
)
ksampler_util.apply_empty_x_to_equal_area(
positive, conds[k], "gligen", lambda cond_cnets, x: cond_cnets[x]
)
return conds
|