File size: 19,074 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from modules.Device import Device
import torch

def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
    """#### Cast a weight tensor to a specified dtype and device.

    

    #### Args:

        - `weight` (torch.Tensor): The weight tensor.

        - `dtype` (torch.dtype): The data type.

        - `device` (torch.device): The device.

        - `non_blocking` (bool): Whether to use non-blocking transfer.

        - `copy` (bool): Whether to copy the tensor.

        

    #### Returns:

        - `torch.Tensor`: The casted weight tensor.

    """
    if device is None or weight.device == device:
        if not copy:
            if dtype is None or weight.dtype == dtype:
                return weight
        return weight.to(dtype=dtype, copy=copy)

    r = torch.empty_like(weight, dtype=dtype, device=device)
    r.copy_(weight, non_blocking=non_blocking)
    return r


def cast_to_input(weight, input, non_blocking=False, copy=True):
    """#### Cast a weight tensor to match the input tensor.

    

    #### Args:

        - `weight` (torch.Tensor): The weight tensor.

        - `input` (torch.Tensor): The input tensor.

        - `non_blocking` (bool): Whether to use non-blocking transfer.

        - `copy` (bool): Whether to copy the tensor.

    

    #### Returns:

        - `torch.Tensor`: The casted weight tensor.

    """
    return cast_to(
        weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy
    )

def cast_bias_weight(s: torch.nn.Module, input: torch.Tensor= None, dtype:torch.dtype = None, device:torch.device = None, bias_dtype:torch.dtype = None) -> tuple:
    """#### Cast the bias and weight of a module to match the input tensor.



    #### Args:

        - `s` (torch.nn.Module): The module.

        - `input` (torch.Tensor): The input tensor.



    #### Returns:

        - `tuple`: The cast weight and bias.

    """
    if input is not None:
        if dtype is None:
            dtype = input.dtype
        if bias_dtype is None:
            bias_dtype = dtype
        if device is None:
            device = input.device

    bias = None
    non_blocking = Device.device_supports_non_blocking(device)
    if s.bias is not None:
        has_function = s.bias_function is not None
        bias = cast_to(
            s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function
        )
        if has_function:
            bias = s.bias_function(bias)

    has_function = s.weight_function is not None
    weight = cast_to(
        s.weight, dtype, device, non_blocking=non_blocking, copy=has_function
    )
    if has_function:
        weight = s.weight_function(weight)
    return weight, bias

class CastWeightBiasOp:
    """#### Class representing a cast weight and bias operation."""

    comfy_cast_weights: bool = False
    weight_function: callable = None
    bias_function: callable = None


class disable_weight_init:
    """#### Class representing a module with disabled weight initialization."""

    class Linear(torch.nn.Linear, CastWeightBiasOp):
        """#### Linear layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the Linear layer."""
            return None

        def forward_comfy_cast_weights(self, input):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            """#### Forward pass for the Linear layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv1d(torch.nn.Conv1d, CastWeightBiasOp):
        """#### Conv1d layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the Conv1d layer."""
            return None

        def forward_comfy_cast_weights(self, input):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

            

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            """#### Forward pass for the Conv1d layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

            

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)
    
    class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
        """#### Conv2d layer with disabled weight initialization."""

        def reset_parameters(self) -> None:
            """#### Reset the parameters of the Conv2d layer."""
            return None

        def forward_cast_weights(self, input: torch.Tensor) -> torch.Tensor:
            """#### Forward pass with comfy cast weights.



            #### Args:

                - `input` (torch.Tensor): The input tensor.



            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs) -> torch.Tensor:
            """#### Forward pass for the Conv2d layer.



            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.



            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)
        
    class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
        """#### Conv3d layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the Conv3d layer."""
            return None
        
        def forward_comfy_cast_weights(self, input):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)
        
        def forward(self, *args, **kwargs):
            """#### Forward pass for the Conv3d layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
        """#### GroupNorm layer with disabled weight initialization."""

        def reset_parameters(self) -> None:
            """#### Reset the parameters of the GroupNorm layer."""
            return None

        def forward_comfy_cast_weights(self, input):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(
                input, self.num_groups, weight, bias, self.eps
            )

        def forward(self, *args, **kwargs):
            """#### Forward pass for the GroupNorm layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
        """#### LayerNorm layer with disabled weight initialization."""

        def reset_parameters(self) -> None:
            """#### Reset the parameters of the LayerNorm layer."""
            return None

        def forward_cast_weights(self, input: torch.Tensor) -> torch.Tensor:
            """#### Forward pass with cast weights.



            #### Args:

                - `input` (torch.Tensor): The input tensor.



            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.weight is not None:
                weight, bias = cast_bias_weight(self, input)
            else:
                weight = None
                bias = None
            return torch.nn.functional.layer_norm(
                input, self.normalized_shape, weight, bias, self.eps
            )

        def forward(self, *args, **kwargs) -> torch.Tensor:
            """#### Forward pass for the LayerNorm layer.



            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.



            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
        """#### ConvTranspose2d layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the ConvTranspose2d layer."""
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                - `output_size` (torch.Size): The output size.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            num_spatial_dims = 2
            output_padding = self._output_padding(
                input,
                output_size,
                self.stride,
                self.padding,
                self.kernel_size,
                num_spatial_dims,
                self.dilation,
            )

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose2d(
                input,
                weight,
                bias,
                self.stride,
                self.padding,
                output_padding,
                self.groups,
                self.dilation,
            )

        def forward(self, *args, **kwargs):
            """#### Forward pass for the ConvTranspose2d layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp):
        """#### ConvTranspose1d layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the ConvTranspose1d layer."""
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                - `output_size` (torch.Size): The output size.

            

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            num_spatial_dims = 1
            output_padding = self._output_padding(
                input,
                output_size,
                self.stride,
                self.padding,
                self.kernel_size,
                num_spatial_dims,
                self.dilation,
            )

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose1d(
                input,
                weight,
                bias,
                self.stride,
                self.padding,
                output_padding,
                self.groups,
                self.dilation,
            )

        def forward(self, *args, **kwargs):
            """#### Forward pass for the ConvTranspose1d layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

            

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Embedding(torch.nn.Embedding, CastWeightBiasOp):
        """#### Embedding layer with disabled weight initialization."""
        def reset_parameters(self):
            """#### Reset the parameters of the Embedding layer."""
            self.bias = None
            return None

        def forward_comfy_cast_weights(self, input, out_dtype=None):
            """#### Forward pass with comfy cast weights.

            

            #### Args:

                - `input` (torch.Tensor): The input tensor.

                - `out_dtype` (torch.dtype): The output data type.

                

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            output_dtype = out_dtype
            if (
                self.weight.dtype == torch.float16
                or self.weight.dtype == torch.bfloat16
            ):
                out_dtype = None
            weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
            return torch.nn.functional.embedding(
                input,
                weight,
                self.padding_idx,
                self.max_norm,
                self.norm_type,
                self.scale_grad_by_freq,
                self.sparse,
            ).to(dtype=output_dtype)

        def forward(self, *args, **kwargs):
            """#### Forward pass for the Embedding layer.

            

            #### Args:

                - `*args`: Variable length argument list.

                - `**kwargs`: Arbitrary keyword arguments.

            

            #### Returns:

                - `torch.Tensor`: The output tensor.

            """
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                if "out_dtype" in kwargs:
                    kwargs.pop("out_dtype")
                return super().forward(*args, **kwargs)
    
    @classmethod
    def conv_nd(s, dims: int, *args, **kwargs) -> torch.nn.Conv2d:
        """#### Create a Conv2d layer with the specified dimensions.



        #### Args:

            - `dims` (int): The number of dimensions.

            - `*args`: Variable length argument list.

            - `**kwargs`: Arbitrary keyword arguments.



        #### Returns:

            - `torch.nn.Conv2d`: The Conv2d layer.

        """
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class manual_cast(disable_weight_init):
    """#### Class representing a module with manual casting."""

    class Linear(disable_weight_init.Linear):
        """#### Linear layer with manual casting."""

        comfy_cast_weights: bool = True
    
    class Conv1d(disable_weight_init.Conv1d):
        """#### Conv1d layer with manual casting."""
        
        comfy_cast_weights = True

    class Conv2d(disable_weight_init.Conv2d):
        """#### Conv2d layer with manual casting."""

        comfy_cast_weights: bool = True
        
    class Conv3d(disable_weight_init.Conv3d):
        """#### Conv3d layer with manual casting."""
        
        comfy_cast_weights = True

    class GroupNorm(disable_weight_init.GroupNorm):
        """#### GroupNorm layer with manual casting."""

        comfy_cast_weights: bool = True

    class LayerNorm(disable_weight_init.LayerNorm):
        """#### LayerNorm layer with manual casting."""

        comfy_cast_weights: bool = True
    
    class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
        """#### ConvTranspose2d layer with manual casting."""
        
        comfy_cast_weights = True

    class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
        """#### ConvTranspose1d layer with manual casting."""
        
        comfy_cast_weights = True

    class Embedding(disable_weight_init.Embedding):
        """#### Embedding layer with manual casting."""
        
        comfy_cast_weights = True