Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,823 Bytes
d9a2e19 1d117d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import math
import os
import torch
from modules.Attention import Attention
from modules.Device import Device
from modules.SD15 import SDClip, SDToken
from modules.cond import cast
from transformers import T5TokenizerFast
activations = {
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
"relu": torch.nn.functional.relu,
}
class T5DenseGatedActDense(torch.nn.Module):
"""#### Dense Gated Activation Layer"""
def __init__(self, model_dim: int, ff_dim: int, ff_activation: str, dtype: torch.dtype, device: torch.device, operations):
"""#### Initialize Dense Gated Activation Layer
#### Args:
- `model_dim` (int): Model dimension.
- `ff_dim` (int): Feedforward dimension.
- `ff_activation` (str): Feedforward activation function.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
self.wi_0 = operations.Linear(
model_dim, ff_dim, bias=False, dtype=dtype, device=device
)
self.wi_1 = operations.Linear(
model_dim, ff_dim, bias=False, dtype=dtype, device=device
)
self.wo = operations.Linear(
ff_dim, model_dim, bias=False, dtype=dtype, device=device
)
# self.dropout = nn.Dropout(config.dropout_rate)
self.act = activations[ff_activation]
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
hidden_gelu = self.act(self.wi_0(x))
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
# x = self.dropout(x)
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
"""#### Feedforward Layer"""
def __init__(
self, model_dim: int, ff_dim: int, ff_activation: str, gated_act: bool, dtype: torch.dtype, device: torch.device, operations
):
"""#### Initialize Feedforward Layer
#### Args:
- `model_dim` (int): Model dimension.
- `ff_dim` (int): Feedforward dimension.
- `ff_activation` (str): Feedforward activation function.
- `gated_act` (bool): Whether to use gated activation.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
if gated_act:
self.DenseReluDense = T5DenseGatedActDense(
model_dim, ff_dim, ff_activation, dtype, device, operations
)
self.layer_norm = T5LayerNorm(
model_dim, dtype=dtype, device=device, operations=operations
)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
# x = x + self.dropout(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
"""#### Attention Layer"""
def __init__(
self,
model_dim: int,
inner_dim: int,
num_heads: int,
relative_attention_bias: bool,
dtype: torch.dtype,
device: torch.device,
operations,
):
"""#### Initialize Attention Layer
#### Args:
- `model_dim` (int): Model dimension.
- `inner_dim` (int): Inner dimension.
- `num_heads` (int): Number of attention heads.
- `relative_attention_bias` (bool): Whether to use relative attention bias.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = operations.Linear(
model_dim, inner_dim, bias=False, dtype=dtype, device=device
)
self.k = operations.Linear(
model_dim, inner_dim, bias=False, dtype=dtype, device=device
)
self.v = operations.Linear(
model_dim, inner_dim, bias=False, dtype=dtype, device=device
)
self.o = operations.Linear(
inner_dim, model_dim, bias=False, dtype=dtype, device=device
)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = operations.Embedding(
self.relative_attention_num_buckets,
self.num_heads,
device=device,
dtype=dtype,
)
@staticmethod
def _relative_position_bucket(
relative_position: torch.Tensor, bidirectional: bool = True, num_buckets: int = 32, max_distance: int = 128
) -> torch.Tensor:
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
#### Args:
- `relative_position` (torch.Tensor): Relative position tensor.
- `bidirectional` (bool): Whether the attention is bidirectional.
- `num_buckets` (int): Number of buckets.
- `max_distance` (int): Maximum distance.
#### Returns:
- `torch.Tensor`: Bucketed relative positions.
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(
relative_position, torch.zeros_like(relative_position)
)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large,
torch.full_like(relative_position_if_large, num_buckets - 1),
)
relative_buckets += torch.where(
is_small, relative_position, relative_position_if_large
)
return relative_buckets
def compute_bias(self, query_length: int, key_length: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
"""#### Compute binned relative position bias
#### Args:
- `query_length` (int): Length of the query.
- `key_length` (int): Length of the key.
- `device` (torch.device): Device.
- `dtype` (torch.dtype): Data type.
#### Returns:
- `torch.Tensor`: Computed bias.
"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[
:, None
]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[
None, :
]
relative_position = (
memory_position - context_position
) # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(
relative_position_bucket, out_dtype=dtype
) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(
0
) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
- `mask` (torch.Tensor, optional): Attention mask. Defaults to None.
- `past_bias` (torch.Tensor, optional): Past bias. Defaults to None.
- `optimized_attention` (callable, optional): Optimized attention function. Defaults to None.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)
if past_bias is not None:
if mask is not None:
mask = mask + past_bias
else:
mask = past_bias
out = optimized_attention(
q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask
)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
"""#### Self-Attention Layer"""
def __init__(
self,
model_dim: int,
inner_dim: int,
ff_dim: int,
num_heads: int,
relative_attention_bias: bool,
dtype: torch.dtype,
device: torch.device,
operations,
):
"""#### Initialize Self-Attention Layer
#### Args:
- `model_dim` (int): Model dimension.
- `inner_dim` (int): Inner dimension.
- `ff_dim` (int): Feedforward dimension.
- `num_heads` (int): Number of attention heads.
- `relative_attention_bias` (bool): Whether to use relative attention bias.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
self.SelfAttention = T5Attention(
model_dim,
inner_dim,
num_heads,
relative_attention_bias,
dtype,
device,
operations,
)
self.layer_norm = T5LayerNorm(
model_dim, dtype=dtype, device=device, operations=operations
)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
- `mask` (torch.Tensor, optional): Attention mask. Defaults to None.
- `past_bias` (torch.Tensor, optional): Past bias. Defaults to None.
- `optimized_attention` (callable, optional): Optimized attention function. Defaults to None.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
self.layer_norm(x)
output, past_bias = self.SelfAttention(
self.layer_norm(x),
mask=mask,
past_bias=past_bias,
optimized_attention=optimized_attention,
)
# x = x + self.dropout(attention_output)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
"""#### T5 Block"""
def __init__(
self,
model_dim: int,
inner_dim: int,
ff_dim: int,
ff_activation: str,
gated_act: bool,
num_heads: int,
relative_attention_bias: bool,
dtype: torch.dtype,
device: torch.device,
operations,
):
"""#### Initialize T5 Block
#### Args:
- `model_dim` (int): Model dimension.
- `inner_dim` (int): Inner dimension.
- `ff_dim` (int): Feedforward dimension.
- `ff_activation` (str): Feedforward activation function.
- `gated_act` (bool): Whether to use gated activation.
- `num_heads` (int): Number of attention heads.
- `relative_attention_bias` (bool): Whether to use relative attention bias.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(
T5LayerSelfAttention(
model_dim,
inner_dim,
ff_dim,
num_heads,
relative_attention_bias,
dtype,
device,
operations,
)
)
self.layer.append(
T5LayerFF(
model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations
)
)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None, past_bias: torch.Tensor = None, optimized_attention = None) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
- `mask` (torch.Tensor, optional): Attention mask. Defaults to None.
- `past_bias` (torch.Tensor, optional): Past bias. Defaults to None.
- `optimized_attention` (callable, optional): Optimized attention function. Defaults to None.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
"""#### T5 Stack"""
def __init__(
self,
num_layers: int,
model_dim: int,
inner_dim: int,
ff_dim: int,
ff_activation: str,
gated_act: bool,
num_heads: int,
relative_attention: bool,
dtype: torch.dtype,
device: torch.device,
operations,
):
"""#### Initialize T5 Stack
#### Args:
- `num_layers` (int): Number of layers.
- `model_dim` (int): Model dimension.
- `inner_dim` (int): Inner dimension.
- `ff_dim` (int): Feedforward dimension.
- `ff_activation` (str): Feedforward activation function.
- `gated_act` (bool): Whether to use gated activation.
- `num_heads` (int): Number of attention heads.
- `relative_attention` (bool): Whether to use relative attention.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
self.block = torch.nn.ModuleList(
[
T5Block(
model_dim,
inner_dim,
ff_dim,
ff_activation,
gated_act,
num_heads,
relative_attention_bias=((not relative_attention) or (i == 0)),
dtype=dtype,
device=device,
operations=operations,
)
for i in range(num_layers)
]
)
self.final_layer_norm = T5LayerNorm(
model_dim, dtype=dtype, device=device, operations=operations
)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
x: torch.Tensor,
attention_mask: torch.Tensor = None,
intermediate_output: int = None,
final_layer_norm_intermediate: bool = True,
dtype: torch.dtype = None,
) -> torch.Tensor:
"""#### Forward Pass
#### Args:
- `x` (torch.Tensor): Input tensor.
- `attention_mask` (torch.Tensor, optional): Attention mask. Defaults to None.
- `intermediate_output` (int, optional): Intermediate output index. Defaults to None.
- `final_layer_norm_intermediate` (bool, optional): Whether to apply final layer norm to intermediate output. Defaults to True.
- `dtype` (torch.dtype, optional): Data type. Defaults to None.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape(
(attention_mask.shape[0], 1, -1, attention_mask.shape[-1])
).expand(
attention_mask.shape[0],
1,
attention_mask.shape[-1],
attention_mask.shape[-1],
)
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
intermediate = None
optimized_attention = Attention.optimized_attention_for_device()
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, mask, past_bias, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
"""#### Initialize T5 Model
#### Args:
- `config_dict` (dict): Configuration dictionary.
- `dtype` (torch.dtype): Data type.
- `device` (torch.device): Device.
- `operations` (Operations): Operations.
"""
super().__init__()
self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"]
self.encoder = T5Stack(
self.num_layers,
model_dim,
model_dim,
config_dict["d_ff"],
config_dict["dense_act_fn"],
config_dict["is_gated_act"],
config_dict["num_heads"],
config_dict["model_type"] != "umt5",
dtype,
device,
operations,
)
self.dtype = dtype
self.shared = operations.Embedding(
config_dict["vocab_size"], model_dim, device=device, dtype=dtype
)
def get_input_embeddings(self) -> torch.nn.Embedding:
"""#### Get input embeddings
#### Returns:
- `torch.nn.Embedding`: The input embeddings.
"""
return self.shared
def set_input_embeddings(self, embeddings: torch.nn.Embedding) -> None:
"""#### Set input embeddings
#### Args:
- `embeddings` (torch.nn.Embedding): The input embeddings.
"""
self.shared = embeddings
def forward(self, input_ids: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""#### Forward pass
#### Args:
- `input_ids` (torch.Tensor): Input tensor.
- `*args`: Additional arguments.
- `**kwargs`: Additional keyword arguments.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
x = torch.nan_to_num(x) # Fix for fp8 T5 base
return self.encoder(x, *args, **kwargs)
class T5XXLModel(SDClip.SDClipModel):
def __init__(
self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}
):
"""#### Initialize T5XXL Model
#### Args:
- `device` (str, optional): Device. Defaults to "cpu".
- `layer` (str, optional): Layer. Defaults to "last".
- `layer_idx` (int, optional): Layer index. Defaults to None.
- `dtype` (torch.dtype, optional): Data type. Defaults to None.
- `model_options` (dict, optional): Model options. Defaults to {}.
"""
textmodel_json_config = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"./clip/t5_config_xxl.json",
)
super().__init__(
device=device,
layer=layer,
layer_idx=layer_idx,
textmodel_json_config=textmodel_json_config,
dtype=dtype,
special_tokens={"end": 1, "pad": 0},
model_class=T5,
model_options=model_options,
)
class T5XXLTokenizer(SDToken.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
"""#### Initialize T5XXL Tokenizer
#### Args:
- `embedding_directory` (str, optional): Embedding directory. Defaults to None.
- `tokenizer_data` (dict, optional): Tokenizer data. Defaults to {}.
"""
tokenizer_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "./clip/t5_tokenizer"
)
super().__init__(
tokenizer_path,
pad_with_end=False,
embedding_size=4096,
embedding_key="t5xxl",
tokenizer_class=T5TokenizerFast,
has_start_token=False,
pad_to_max_length=False,
max_length=99999999,
min_length=256,
)
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
"""#### Initialize T5 Layer Normalization
#### Args:
- `hidden_size` (int): Hidden size.
- `eps` (float, optional): Epsilon. Defaults to 1e-6.
- `dtype` (torch.dtype, optional): Data type. Defaults to None.
- `device` (torch.device, optional): Device. Defaults to None.
- `operations` (Operations, optional): Operations. Defaults to None.
"""
super().__init__()
self.weight = torch.nn.Parameter(
torch.empty(hidden_size, dtype=dtype, device=device)
)
self.variance_epsilon = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass
#### Args:
- `x` (torch.Tensor): Input tensor.
#### Returns:
- `torch.Tensor`: Output tensor.
"""
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return cast.cast_to_input(self.weight, x) * x
class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
"""#### Initialize Flux Tokenizer
#### Args:
- `embedding_directory` (str, optional): Embedding directory. Defaults to None.
- `tokenizer_data` (dict, optional): Tokenizer data. Defaults to {}.
"""
clip_l_tokenizer_class = tokenizer_data.get(
"clip_l_tokenizer_class", SDToken.SDTokenizer
)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text: str, return_word_ids=False) -> dict:
"""#### Tokenize text with weights
#### Args:
- `text` (str): Text to tokenize.
- `return_word_ids` (bool, optional): Whether to return word IDs. Defaults to False.
#### Returns:
- `dict`: Tokenized text with weights.
"""
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out
class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
"""#### Initialize FluxClip Model
#### Args:
- `dtype_t5` (torch.dtype, optional): T5 data type. Defaults to None.
- `device` (str, optional): Device. Defaults to "cpu".
- `dtype` (torch.dtype, optional): Data type. Defaults to None.
- `model_options` (dict, optional): Model options. Defaults to {}.
"""
super().__init__()
dtype_t5 = Device.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", SDClip.SDClipModel)
self.clip_l = clip_l_class(
device=device,
dtype=dtype,
return_projected_pooled=False,
model_options=model_options,
)
self.t5xxl = T5XXLModel(
device=device, dtype=dtype_t5, model_options=model_options
)
self.dtypes = set([dtype, dtype_t5])
def reset_clip_options(self) -> None:
"""#### Reset CLIP options"""
self.clip_l.reset_clip_options()
self.t5xxl.reset_clip_options()
def encode_token_weights(self, token_weight_pairs: dict) -> tuple:
"""#### Encode token weights
#### Args:
- `token_weight_pairs` (dict): Token weight pairs.
#### Returns:
- `tuple`: Encoded token weights.
"""
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
return t5_out, l_pooled
def load_sd(self, sd: dict) -> None:
"""#### Load state dictionary
#### Args:
- `sd` (dict): State dictionary.
"""
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
else:
return self.t5xxl.load_sd(sd)
def flux_clip(dtype_t5=None):
"""#### Create FluxClip Model
#### Args:
- `dtype_t5` (torch.dtype, optional): T5 data type. Defaults to None.
#### Returns:
- `FluxClipModel`: FluxClip Model class.
"""
class FluxClipModel_(FluxClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
"""#### Initialize FluxClip Model
#### Args:
- `device` (str, optional): Device. Defaults to "cpu".
- `dtype` (torch.dtype, optional): Data type. Defaults to None.
- `model_options` (dict, optional): Model options. Defaults to {}.
"""
super().__init__(
dtype_t5=dtype_t5,
device=device,
dtype=dtype,
model_options=model_options,
)
return FluxClipModel_ |