Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,425 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
from enum import Enum
import logging
import torch
from modules.Model import ModelPatcher
from modules.Attention import Attention
from modules.Device import Device
from modules.SD15 import SDToken
from modules.Utilities import util
from modules.clip import FluxClip
from modules.cond import cast
class CLIPAttention(torch.nn.Module):
"""#### The CLIPAttention module."""
def __init__(
self,
embed_dim: int,
heads: int,
dtype: torch.dtype,
device: torch.device,
operations: object,
):
"""#### Initialize the CLIPAttention module.
#### Args:
- `embed_dim` (int): The embedding dimension.
- `heads` (int): The number of attention heads.
- `dtype` (torch.dtype): The data type.
- `device` (torch.device): The device to use.
- `operations` (object): The operations object.
"""
super().__init__()
self.heads = heads
self.q_proj = operations.Linear(
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
)
self.k_proj = operations.Linear(
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
)
self.v_proj = operations.Linear(
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
)
self.out_proj = operations.Linear(
embed_dim, embed_dim, bias=True, dtype=dtype, device=device
)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor = None,
optimized_attention: callable = None,
) -> torch.Tensor:
"""#### Forward pass for the CLIPAttention module.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `mask` (torch.Tensor, optional): The attention mask. Defaults to None.
- `optimized_attention` (callable, optional): The optimized attention function. Defaults to None.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention(q, k, v, self.heads, mask)
return self.out_proj(out)
ACTIVATIONS = {
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
"gelu": torch.nn.functional.gelu,
}
class CLIPMLP(torch.nn.Module):
"""#### The CLIPMLP module.
(MLP stands for Multi-Layer Perceptron.)"""
def __init__(
self,
embed_dim: int,
intermediate_size: int,
activation: str,
dtype: torch.dtype,
device: torch.device,
operations: object,
):
"""#### Initialize the CLIPMLP module.
#### Args:
- `embed_dim` (int): The embedding dimension.
- `intermediate_size` (int): The intermediate size.
- `activation` (str): The activation function.
- `dtype` (torch.dtype): The data type.
- `device` (torch.device): The device to use.
- `operations` (object): The operations object.
"""
super().__init__()
self.fc1 = operations.Linear(
embed_dim, intermediate_size, bias=True, dtype=dtype, device=device
)
self.activation = ACTIVATIONS[activation]
self.fc2 = operations.Linear(
intermediate_size, embed_dim, bias=True, dtype=dtype, device=device
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""#### Forward pass for the CLIPMLP module.
#### Args:
- `x` (torch.Tensor): The input tensor.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
x = self.fc1(x)
x = self.activation(x)
x = self.fc2(x)
return x
class CLIPLayer(torch.nn.Module):
"""#### The CLIPLayer module."""
def __init__(
self,
embed_dim: int,
heads: int,
intermediate_size: int,
intermediate_activation: str,
dtype: torch.dtype,
device: torch.device,
operations: object,
):
"""#### Initialize the CLIPLayer module.
#### Args:
- `embed_dim` (int): The embedding dimension.
- `heads` (int): The number of attention heads.
- `intermediate_size` (int): The intermediate size.
- `intermediate_activation` (str): The intermediate activation function.
- `dtype` (torch.dtype): The data type.
- `device` (torch.device): The device to use.
- `operations` (object): The operations object.
"""
super().__init__()
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
self.mlp = CLIPMLP(
embed_dim,
intermediate_size,
intermediate_activation,
dtype,
device,
operations,
)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor = None,
optimized_attention: callable = None,
) -> torch.Tensor:
"""#### Forward pass for the CLIPLayer module.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `mask` (torch.Tensor, optional): The attention mask. Defaults to None.
- `optimized_attention` (callable, optional): The optimized attention function. Defaults to None.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
x += self.mlp(self.layer_norm2(x))
return x
class CLIPEncoder(torch.nn.Module):
"""#### The CLIPEncoder module."""
def __init__(
self,
num_layers: int,
embed_dim: int,
heads: int,
intermediate_size: int,
intermediate_activation: str,
dtype: torch.dtype,
device: torch.device,
operations: object,
):
"""#### Initialize the CLIPEncoder module.
#### Args:
- `num_layers` (int): The number of layers.
- `embed_dim` (int): The embedding dimension.
- `heads` (int): The number of attention heads.
- `intermediate_size` (int): The intermediate size.
- `intermediate_activation` (str): The intermediate activation function.
- `dtype` (torch.dtype): The data type.
- `device` (torch.device): The device to use.
- `operations` (object): The operations object.
"""
super().__init__()
self.layers = torch.nn.ModuleList(
[
CLIPLayer(
embed_dim,
heads,
intermediate_size,
intermediate_activation,
dtype,
device,
operations,
)
for i in range(num_layers)
]
)
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor = None,
intermediate_output: int = None,
) -> tuple:
"""#### Forward pass for the CLIPEncoder module.
#### Args:
- `x` (torch.Tensor): The input tensor.
- `mask` (torch.Tensor, optional): The attention mask. Defaults to None.
- `intermediate_output` (int, optional): The intermediate output layer. Defaults to None.
#### Returns:
- `tuple`: The output tensor and the intermediate output tensor.
"""
optimized_attention = Attention.optimized_attention_for_device()
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, length in enumerate(self.layers):
x = length(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
"""#### The CLIPEmbeddings module."""
def __init__(
self,
embed_dim: int,
vocab_size: int = 49408,
num_positions: int = 77,
dtype: torch.dtype = None,
device: torch.device = None,
operations: object = torch.nn,
):
"""#### Initialize the CLIPEmbeddings module.
#### Args:
- `embed_dim` (int): The embedding dimension.
- `vocab_size` (int, optional): The vocabulary size. Defaults to 49408.
- `num_positions` (int, optional): The number of positions. Defaults to 77.
- `dtype` (torch.dtype, optional): The data type. Defaults to None.
- `device` (torch.device, optional): The device to use. Defaults to None.
"""
super().__init__()
self.token_embedding = operations.Embedding(
vocab_size, embed_dim, dtype=dtype, device=device
)
self.position_embedding = operations.Embedding(
num_positions, embed_dim, dtype=dtype, device=device
)
def forward(self, input_tokens: torch.Tensor, dtype=torch.float32) -> torch.Tensor:
"""#### Forward pass for the CLIPEmbeddings module.
#### Args:
- `input_tokens` (torch.Tensor): The input tokens.
- `dtype` (torch.dtype, optional): The data type. Defaults to torch.float32.
#### Returns:
- `torch.Tensor`: The output tensor.
"""
return self.token_embedding(input_tokens, out_dtype=dtype) + cast.cast_to(
self.position_embedding.weight, dtype=dtype, device=input_tokens.device
)
class CLIP:
"""#### The CLIP class."""
def __init__(
self,
target: object = None,
embedding_directory: str = None,
no_init: bool = False,
tokenizer_data={},
parameters=0,
model_options={},
):
"""#### Initialize the CLIP class.
#### Args:
- `target` (object, optional): The target object. Defaults to None.
- `embedding_directory` (str, optional): The embedding directory. Defaults to None.
- `no_init` (bool, optional): Whether to skip initialization. Defaults to False.
"""
if no_init:
return
params = target.params.copy()
clip = target.clip
tokenizer = target.tokenizer
load_device = model_options.get("load_device", Device.text_encoder_device())
offload_device = model_options.get(
"offload_device", Device.text_encoder_offload_device()
)
dtype = model_options.get("dtype", None)
if dtype is None:
dtype = Device.text_encoder_dtype(load_device)
params["dtype"] = dtype
params["device"] = model_options.get(
"initial_device",
Device.text_encoder_initial_device(
load_device, offload_device, parameters * Device.dtype_size(dtype)
),
)
params["model_options"] = model_options
self.cond_stage_model = clip(**(params))
# for dt in self.cond_stage_model.dtypes:
# if not Device.supports_cast(load_device, dt):
# load_device = offload_device
# if params["device"] != offload_device:
# self.cond_stage_model.to(offload_device)
# logging.warning("Had to shift TE back.")
try:
self.tokenizer = tokenizer(
embedding_directory=embedding_directory, tokenizer_data=tokenizer_data
)
except TypeError:
self.tokenizer = tokenizer(
embedding_directory=embedding_directory
)
self.patcher = ModelPatcher.ModelPatcher(
self.cond_stage_model,
load_device=load_device,
offload_device=offload_device,
)
if params["device"] == load_device:
Device.load_models_gpu([self.patcher], force_full_load=True, flux_enabled=True)
self.layer_idx = None
logging.debug(
"CLIP model load device: {}, offload device: {}, current: {}".format(
load_device, offload_device, params["device"]
)
)
def clone(self) -> "CLIP":
"""#### Clone the CLIP object.
#### Returns:
- `CLIP`: The cloned CLIP object.
"""
n = CLIP(no_init=True)
n.patcher = self.patcher.clone()
n.cond_stage_model = self.cond_stage_model
n.tokenizer = self.tokenizer
n.layer_idx = self.layer_idx
return n
def add_patches(
self, patches: list, strength_patch: float = 1.0, strength_model: float = 1.0
) -> None:
"""#### Add patches to the model.
#### Args:
- `patches` (list): The patches to add.
- `strength_patch` (float, optional): The strength of the patches. Defaults to 1.0.
- `strength_model` (float, optional): The strength of the model. Defaults to 1.0.
"""
return self.patcher.add_patches(patches, strength_patch, strength_model)
def clip_layer(self, layer_idx: int) -> None:
"""#### Set the clip layer.
#### Args:
- `layer_idx` (int): The layer index.
"""
self.layer_idx = layer_idx
def tokenize(self, text: str, return_word_ids: bool = False) -> list:
"""#### Tokenize the input text.
#### Args:
- `text` (str): The input text.
- `return_word_ids` (bool, optional): Whether to return word IDs. Defaults to False.
#### Returns:
- `list`: The tokenized text.
"""
return self.tokenizer.tokenize_with_weights(text, return_word_ids)
def encode_from_tokens(self, tokens: list, return_pooled: bool = False, return_dict: bool = False, flux_enabled:bool = False) -> tuple:
"""#### Encode the input tokens.
#### Args:
- `tokens` (list): The input tokens.
- `return_pooled` (bool, optional): Whether to return the pooled output. Defaults to False.
- `flux_enabled` (bool, optional): Whether to enable flux. Defaults to False.
#### Returns:
- `tuple`: The encoded tokens and the pooled output.
"""
self.cond_stage_model.reset_clip_options()
if self.layer_idx is not None:
self.cond_stage_model.set_clip_options({"layer": self.layer_idx})
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(flux_enabled=flux_enabled)
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
if return_dict:
out = {"cond": cond, "pooled_output": pooled}
if len(o) > 2:
for k in o[2]:
out[k] = o[2][k]
return out
if return_pooled:
return cond, pooled
return cond
def load_sd(self, sd: dict, full_model: bool = False) -> None:
"""#### Load the state dictionary.
#### Args:
- `sd` (dict): The state dictionary.
- `full_model` (bool, optional): Whether to load the full model. Defaults to False.
"""
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False)
else:
return self.cond_stage_model.load_sd(sd)
def load_model(self, flux_enabled:bool = False) -> ModelPatcher:
"""#### Load the model.
#### Returns:
- `ModelPatcher`: The model patcher.
"""
Device.load_model_gpu(self.patcher, flux_enabled=flux_enabled)
return self.patcher
def encode(self, text):
"""#### Encode the input text.
#### Args:
- `text` (str): The input text.
#### Returns:
- `torch.Tensor`: The encoded text.
"""
tokens = self.tokenize(text)
return self.encode_from_tokens(tokens)
def get_sd(self):
"""#### Get the state dictionary.
#### Returns:
- `dict`: The state dictionary.
"""
sd_clip = self.cond_stage_model.state_dict()
sd_tokenizer = self.tokenizer.state_dict()
for k in sd_tokenizer:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def get_key_patches(self):
"""#### Get the key patches.
#### Returns:
- `list`: The key patches.
"""
return self.patcher.get_key_patches()
class CLIPType(Enum):
STABLE_DIFFUSION = 1
SD3 = 3
FLUX = 6
def load_text_encoder_state_dicts(
state_dicts=[],
embedding_directory=None,
clip_type=CLIPType.STABLE_DIFFUSION,
model_options={},
):
"""#### Load the text encoder state dictionaries.
#### Args:
- `state_dicts` (list, optional): The state dictionaries. Defaults to [].
- `embedding_directory` (str, optional): The embedding directory. Defaults to None.
- `clip_type` (CLIPType, optional): The CLIP type. Defaults to CLIPType.STABLE_DIFFUSION.
- `model_options` (dict, optional): The model options. Defaults to {}.
#### Returns:
- `CLIP`: The CLIP object.
"""
clip_data = state_dicts
class EmptyClass:
pass
for i in range(len(clip_data)):
if "text_projection" in clip_data[i]:
clip_data[i]["text_projection.weight"] = clip_data[i][
"text_projection"
].transpose(
0, 1
) # old models saved with the CLIPSave node
clip_target = EmptyClass()
clip_target.params = {}
if len(clip_data) == 2:
if clip_type == CLIPType.FLUX:
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
weight = clip_data[0].get(weight_name, clip_data[1].get(weight_name, None))
dtype_t5 = None
if weight is not None:
dtype_t5 = weight.dtype
clip_target.clip = FluxClip.flux_clip(dtype_t5=dtype_t5)
clip_target.tokenizer = FluxClip.FluxTokenizer
parameters = 0
tokenizer_data = {}
for c in clip_data:
parameters += util.calculate_parameters(c)
tokenizer_data, model_options = SDToken.model_options_long_clip(
c, tokenizer_data, model_options
)
clip = CLIP(
clip_target,
embedding_directory=embedding_directory,
parameters=parameters,
tokenizer_data=tokenizer_data,
model_options=model_options,
)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
return clip
class CLIPTextEncode:
"""#### Text encoding class for the CLIP model."""
def encode(self, clip: CLIP, text: str, flux_enabled: bool = False) -> tuple:
"""#### Encode the input text.
#### Args:
- `clip` (CLIP): The CLIP object.
- `text` (str): The input text.
- `flux_enabled` (bool, optional): Whether to enable flux. Defaults to False.
#### Returns:
- `tuple`: The encoded text and the pooled output.
"""
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True, flux_enabled=flux_enabled)
return ([[cond, {"pooled_output": pooled}]],)
class CLIPSetLastLayer:
"""#### Set the last layer class for the CLIP model."""
def set_last_layer(self, clip: CLIP, stop_at_clip_layer: int) -> tuple:
"""#### Set the last layer of the CLIP model.
works same as Automatic1111 clip skip
#### Args:
- `clip` (CLIP): The CLIP object.
- `stop_at_clip_layer` (int): The layer to stop at.
#### Returns:
- `tuple`: Thefrom enum import Enum
"""
clip = clip.clone()
clip.clip_layer(stop_at_clip_layer)
return (clip,)
class ClipTarget:
"""#### Target class for the CLIP model."""
def __init__(self, tokenizer: object, clip: object):
"""#### Initialize the ClipTarget class.
#### Args:
- `tokenizer` (object): The tokenizer.
- `clip` (object): The CLIP model.
"""
self.clip = clip
self.tokenizer = tokenizer
self.params = {}
|