File size: 5,901 Bytes
d9a2e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d117d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch

class CLIPTextModel_(torch.nn.Module):
    """#### The CLIPTextModel_ module."""
    def __init__(

        self,

        config_dict: dict,

        dtype: torch.dtype,

        device: torch.device,

        operations: object,

    ):
        """#### Initialize the CLIPTextModel_ module.



        #### Args:

            - `config_dict` (dict): The configuration dictionary.

            - `dtype` (torch.dtype): The data type.

            - `device` (torch.device): The device to use.

            - `operations` (object): The operations object.

        """
        num_layers = config_dict["num_hidden_layers"]
        embed_dim = config_dict["hidden_size"]
        heads = config_dict["num_attention_heads"]
        intermediate_size = config_dict["intermediate_size"]
        intermediate_activation = config_dict["hidden_act"]
        num_positions = config_dict["max_position_embeddings"]
        self.eos_token_id = config_dict["eos_token_id"]

        super().__init__()
        from modules.clip.Clip import CLIPEmbeddings, CLIPEncoder
        self.embeddings = CLIPEmbeddings(
            embed_dim,
            num_positions=num_positions,
            dtype=dtype,
            device=device,
            operations=operations,
        )
        self.encoder = CLIPEncoder(
            num_layers,
            embed_dim,
            heads,
            intermediate_size,
            intermediate_activation,
            dtype,
            device,
            operations,
        )
        self.final_layer_norm = operations.LayerNorm(
            embed_dim, dtype=dtype, device=device
        )

    def forward(

        self,

        input_tokens: torch.Tensor,

        attention_mask: torch.Tensor = None,

        intermediate_output: int = None,

        final_layer_norm_intermediate: bool = True,

        dtype: torch.dtype = torch.float32,

    ) -> tuple:
        """#### Forward pass for the CLIPTextModel_ module.



        #### Args:

            - `input_tokens` (torch.Tensor): The input tokens.

            - `attention_mask` (torch.Tensor, optional): The attention mask. Defaults to None.

            - `intermediate_output` (int, optional): The intermediate output layer. Defaults to None.

            - `final_layer_norm_intermediate` (bool, optional): Whether to apply final layer normalization to the intermediate output. Defaults to True.



        #### Returns:

            - `tuple`: The output tensor, the intermediate output tensor, and the pooled output tensor.

        """
        x = self.embeddings(input_tokens, dtype=dtype)
        mask = None
        if attention_mask is not None:
            mask = 1.0 - attention_mask.to(x.dtype).reshape(
                (attention_mask.shape[0], 1, -1, attention_mask.shape[-1])
            ).expand(
                attention_mask.shape[0],
                1,
                attention_mask.shape[-1],
                attention_mask.shape[-1],
            )
            mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))

        causal_mask = (
            torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device)
            .fill_(float("-inf"))
            .triu_(1)
        )
        if mask is not None:
            mask += causal_mask
        else:
            mask = causal_mask

        x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
        x = self.final_layer_norm(x)
        if i is not None and final_layer_norm_intermediate:
            i = self.final_layer_norm(i)

        pooled_output = x[
            torch.arange(x.shape[0], device=x.device),
            (
                torch.round(input_tokens).to(dtype=torch.int, device=x.device)
                == self.eos_token_id
            )
            .int()
            .argmax(dim=-1),
        ]
        return x, i, pooled_output

class CLIPTextModel(torch.nn.Module):
    """#### The CLIPTextModel module."""
    def __init__(

        self,

        config_dict: dict,

        dtype: torch.dtype,

        device: torch.device,

        operations: object,

    ):
        """#### Initialize the CLIPTextModel module.



        #### Args:

            - `config_dict` (dict): The configuration dictionary.

            - `dtype` (torch.dtype): The data type.

            - `device` (torch.device): The device to use.

            - `operations` (object): The operations object.

        """
        super().__init__()
        self.num_layers = config_dict["num_hidden_layers"]
        self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
        embed_dim = config_dict["hidden_size"]
        self.text_projection = operations.Linear(
            embed_dim, embed_dim, bias=False, dtype=dtype, device=device
        )
        self.dtype = dtype

    def get_input_embeddings(self) -> torch.nn.Embedding:
        """#### Get the input embeddings.



        #### Returns:

            - `torch.nn.Embedding`: The input embeddings.

        """
        return self.text_model.embeddings.token_embedding

    def set_input_embeddings(self, embeddings: torch.nn.Embedding) -> None:
        """#### Set the input embeddings.



        #### Args:

            - `embeddings` (torch.nn.Embedding): The input embeddings.

        """
        self.text_model.embeddings.token_embedding = embeddings

    def forward(self, *args, **kwargs) -> tuple:
        """#### Forward pass for the CLIPTextModel module.



        #### Args:

            - `*args`: Variable length argument list.

            - `**kwargs`: Arbitrary keyword arguments.



        #### Returns:

            - `tuple`: The output tensors.

        """
        x = self.text_model(*args, **kwargs)
        out = self.text_projection(x[2])
        return (x[0], x[1], out, x[2])