Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,474 Bytes
d9a2e19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 |
import contextlib
import dataclasses
import unittest
from collections import defaultdict
from typing import DefaultDict, Dict
import torch
from modules.AutoEncoders.ResBlock import forward_timestep_embed1
from modules.NeuralNetwork.unet import apply_control1
from modules.sample.sampling_util import timestep_embedding
@dataclasses.dataclass
class CacheContext:
buffers: Dict[str, torch.Tensor] = dataclasses.field(default_factory=dict)
incremental_name_counters: DefaultDict[str, int] = dataclasses.field(
default_factory=lambda: defaultdict(int))
def get_incremental_name(self, name=None):
if name is None:
name = "default"
idx = self.incremental_name_counters[name]
self.incremental_name_counters[name] += 1
return f"{name}_{idx}"
def reset_incremental_names(self):
self.incremental_name_counters.clear()
@torch.compiler.disable()
def get_buffer(self, name):
return self.buffers.get(name)
@torch.compiler.disable()
def set_buffer(self, name, buffer):
self.buffers[name] = buffer
def clear_buffers(self):
self.buffers.clear()
@torch.compiler.disable()
def get_buffer(name):
cache_context = get_current_cache_context()
assert cache_context is not None, "cache_context must be set before"
return cache_context.get_buffer(name)
@torch.compiler.disable()
def set_buffer(name, buffer):
cache_context = get_current_cache_context()
assert cache_context is not None, "cache_context must be set before"
cache_context.set_buffer(name, buffer)
_current_cache_context = None
def create_cache_context():
return CacheContext()
def get_current_cache_context():
return _current_cache_context
def set_current_cache_context(cache_context=None):
global _current_cache_context
_current_cache_context = cache_context
@contextlib.contextmanager
def cache_context(cache_context):
global _current_cache_context
old_cache_context = _current_cache_context
_current_cache_context = cache_context
try:
yield
finally:
_current_cache_context = old_cache_context
# def patch_get_output_data():
# import execution
# get_output_data = getattr(execution, "get_output_data", None)
# if get_output_data is None:
# return
# if getattr(get_output_data, "_patched", False):
# return
# def new_get_output_data(*args, **kwargs):
# out = get_output_data(*args, **kwargs)
# cache_context = get_current_cache_context()
# if cache_context is not None:
# cache_context.clear_buffers()
# set_current_cache_context(None)
# return out
# new_get_output_data._patched = True
# execution.get_output_data = new_get_output_data
@torch.compiler.disable()
def are_two_tensors_similar(t1, t2, *, threshold):
if t1.shape != t2.shape:
return False
mean_diff = (t1 - t2).abs().mean()
mean_t1 = t1.abs().mean()
diff = mean_diff / mean_t1
return diff.item() < threshold
@torch.compiler.disable()
def apply_prev_hidden_states_residual(hidden_states,
encoder_hidden_states=None):
hidden_states_residual = get_buffer("hidden_states_residual")
assert hidden_states_residual is not None, "hidden_states_residual must be set before"
hidden_states = hidden_states_residual + hidden_states
hidden_states = hidden_states.contiguous()
if encoder_hidden_states is None:
return hidden_states
encoder_hidden_states_residual = get_buffer(
"encoder_hidden_states_residual")
if encoder_hidden_states_residual is None:
encoder_hidden_states = None
else:
encoder_hidden_states = encoder_hidden_states_residual + encoder_hidden_states
encoder_hidden_states = encoder_hidden_states.contiguous()
return hidden_states, encoder_hidden_states
@torch.compiler.disable()
def get_can_use_cache(first_hidden_states_residual,
threshold,
parallelized=False):
prev_first_hidden_states_residual = get_buffer(
"first_hidden_states_residual")
can_use_cache = prev_first_hidden_states_residual is not None and are_two_tensors_similar(
prev_first_hidden_states_residual,
first_hidden_states_residual,
threshold=threshold,
)
return can_use_cache
class CachedTransformerBlocks(torch.nn.Module):
def __init__(
self,
transformer_blocks,
single_transformer_blocks=None,
*,
residual_diff_threshold,
validate_can_use_cache_function=None,
return_hidden_states_first=True,
accept_hidden_states_first=True,
cat_hidden_states_first=False,
return_hidden_states_only=False,
clone_original_hidden_states=False,
):
super().__init__()
self.transformer_blocks = transformer_blocks
self.single_transformer_blocks = single_transformer_blocks
self.residual_diff_threshold = residual_diff_threshold
self.validate_can_use_cache_function = validate_can_use_cache_function
self.return_hidden_states_first = return_hidden_states_first
self.accept_hidden_states_first = accept_hidden_states_first
self.cat_hidden_states_first = cat_hidden_states_first
self.return_hidden_states_only = return_hidden_states_only
self.clone_original_hidden_states = clone_original_hidden_states
def forward(self, *args, **kwargs):
img_arg_name = None
if "img" in kwargs:
img_arg_name = "img"
elif "hidden_states" in kwargs:
img_arg_name = "hidden_states"
txt_arg_name = None
if "txt" in kwargs:
txt_arg_name = "txt"
elif "context" in kwargs:
txt_arg_name = "context"
elif "encoder_hidden_states" in kwargs:
txt_arg_name = "encoder_hidden_states"
if self.accept_hidden_states_first:
if args:
img = args[0]
args = args[1:]
else:
img = kwargs.pop(img_arg_name)
if args:
txt = args[0]
args = args[1:]
else:
txt = kwargs.pop(txt_arg_name)
else:
if args:
txt = args[0]
args = args[1:]
else:
txt = kwargs.pop(txt_arg_name)
if args:
img = args[0]
args = args[1:]
else:
img = kwargs.pop(img_arg_name)
hidden_states = img
encoder_hidden_states = txt
if self.residual_diff_threshold <= 0.0:
for block in self.transformer_blocks:
if txt_arg_name == "encoder_hidden_states":
hidden_states = block(
hidden_states,
*args,
encoder_hidden_states=encoder_hidden_states,
**kwargs)
else:
if self.accept_hidden_states_first:
hidden_states = block(hidden_states,
encoder_hidden_states, *args,
**kwargs)
else:
hidden_states = block(encoder_hidden_states,
hidden_states, *args, **kwargs)
if not self.return_hidden_states_only:
hidden_states, encoder_hidden_states = hidden_states
if not self.return_hidden_states_first:
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
if self.single_transformer_blocks is not None:
hidden_states = torch.cat(
[hidden_states, encoder_hidden_states]
if self.cat_hidden_states_first else
[encoder_hidden_states, hidden_states],
dim=1)
for block in self.single_transformer_blocks:
hidden_states = block(hidden_states, *args, **kwargs)
hidden_states = hidden_states[:,
encoder_hidden_states.shape[1]:]
if self.return_hidden_states_only:
return hidden_states
else:
return ((hidden_states, encoder_hidden_states)
if self.return_hidden_states_first else
(encoder_hidden_states, hidden_states))
original_hidden_states = hidden_states
if self.clone_original_hidden_states:
original_hidden_states = original_hidden_states.clone()
first_transformer_block = self.transformer_blocks[0]
if txt_arg_name == "encoder_hidden_states":
hidden_states = first_transformer_block(
hidden_states,
*args,
encoder_hidden_states=encoder_hidden_states,
**kwargs)
else:
if self.accept_hidden_states_first:
hidden_states = first_transformer_block(
hidden_states, encoder_hidden_states, *args, **kwargs)
else:
hidden_states = first_transformer_block(
encoder_hidden_states, hidden_states, *args, **kwargs)
if not self.return_hidden_states_only:
hidden_states, encoder_hidden_states = hidden_states
if not self.return_hidden_states_first:
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
first_hidden_states_residual = hidden_states - original_hidden_states
del original_hidden_states
can_use_cache = get_can_use_cache(
first_hidden_states_residual,
threshold=self.residual_diff_threshold,
)
if self.validate_can_use_cache_function is not None:
can_use_cache = self.validate_can_use_cache_function(can_use_cache)
torch._dynamo.graph_break()
if can_use_cache:
del first_hidden_states_residual
hidden_states, encoder_hidden_states = apply_prev_hidden_states_residual(
hidden_states, encoder_hidden_states)
else:
set_buffer("first_hidden_states_residual",
first_hidden_states_residual)
del first_hidden_states_residual
(
hidden_states,
encoder_hidden_states,
hidden_states_residual,
encoder_hidden_states_residual,
) = self.call_remaining_transformer_blocks(
hidden_states,
encoder_hidden_states,
*args,
txt_arg_name=txt_arg_name,
**kwargs)
set_buffer("hidden_states_residual", hidden_states_residual)
if encoder_hidden_states_residual is not None:
set_buffer("encoder_hidden_states_residual",
encoder_hidden_states_residual)
torch._dynamo.graph_break()
if self.return_hidden_states_only:
return hidden_states
else:
return ((hidden_states, encoder_hidden_states)
if self.return_hidden_states_first else
(encoder_hidden_states, hidden_states))
def call_remaining_transformer_blocks(self,
hidden_states,
encoder_hidden_states,
*args,
txt_arg_name=None,
**kwargs):
original_hidden_states = hidden_states
original_encoder_hidden_states = encoder_hidden_states
if self.clone_original_hidden_states:
original_hidden_states = original_hidden_states.clone()
original_encoder_hidden_states = original_encoder_hidden_states.clone(
)
for block in self.transformer_blocks[1:]:
if txt_arg_name == "encoder_hidden_states":
hidden_states = block(
hidden_states,
*args,
encoder_hidden_states=encoder_hidden_states,
**kwargs)
else:
if self.accept_hidden_states_first:
hidden_states = block(hidden_states, encoder_hidden_states,
*args, **kwargs)
else:
hidden_states = block(encoder_hidden_states, hidden_states,
*args, **kwargs)
if not self.return_hidden_states_only:
hidden_states, encoder_hidden_states = hidden_states
if not self.return_hidden_states_first:
hidden_states, encoder_hidden_states = encoder_hidden_states, hidden_states
if self.single_transformer_blocks is not None:
hidden_states = torch.cat([hidden_states, encoder_hidden_states]
if self.cat_hidden_states_first else
[encoder_hidden_states, hidden_states],
dim=1)
for block in self.single_transformer_blocks:
hidden_states = block(hidden_states, *args, **kwargs)
if self.cat_hidden_states_first:
hidden_states, encoder_hidden_states = hidden_states.split(
[
hidden_states.shape[1] -
encoder_hidden_states.shape[1],
encoder_hidden_states.shape[1]
],
dim=1)
else:
encoder_hidden_states, hidden_states = hidden_states.split(
[
encoder_hidden_states.shape[1],
hidden_states.shape[1] - encoder_hidden_states.shape[1]
],
dim=1)
hidden_states_shape = hidden_states.shape
hidden_states = hidden_states.flatten().contiguous().reshape(
hidden_states_shape)
if encoder_hidden_states is not None:
encoder_hidden_states_shape = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.flatten().contiguous(
).reshape(encoder_hidden_states_shape)
hidden_states_residual = hidden_states - original_hidden_states
if encoder_hidden_states is None:
encoder_hidden_states_residual = None
else:
encoder_hidden_states_residual = encoder_hidden_states - original_encoder_hidden_states
return hidden_states, encoder_hidden_states, hidden_states_residual, encoder_hidden_states_residual
# Based on 90f349f93df3083a507854d7fc7c3e1bb9014e24
def create_patch_unet_model__forward(model,
*,
residual_diff_threshold,
validate_can_use_cache_function=None):
def call_remaining_blocks(self, transformer_options, control,
transformer_patches, hs, h, *args, **kwargs):
original_hidden_states = h
for id, module in enumerate(self.input_blocks):
if id < 2:
continue
transformer_options["block"] = ("input", id)
h = forward_timestep_embed1(module, h, *args, **kwargs)
h = apply_control1(h, control, 'input')
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)
hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)
transformer_options["block"] = ("middle", 0)
if self.middle_block is not None:
h = forward_timestep_embed1(self.middle_block, h, *args, **kwargs)
h = apply_control1(h, control, 'middle')
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
hsp = apply_control1(hsp, control, 'output')
if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)
h = torch.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed1(module, h, *args, output_shape,
**kwargs)
hidden_states_residual = h - original_hidden_states
return h, hidden_states_residual
def unet_model__forward(self,
x,
timesteps=None,
context=None,
y=None,
control=None,
transformer_options={},
**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
transformer_options["original_shape"] = list(x.shape)
transformer_options["transformer_index"] = 0
transformer_patches = transformer_options.get("patches", {})
num_video_frames = kwargs.get("num_video_frames",
self.default_num_video_frames)
image_only_indicator = kwargs.get("image_only_indicator", None)
time_context = kwargs.get("time_context", None)
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps,
self.model_channels,
repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
if "emb_patch" in transformer_patches:
patch = transformer_patches["emb_patch"]
for p in patch:
emb = p(emb, self.model_channels, transformer_options)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
can_use_cache = False
h = x
for id, module in enumerate(self.input_blocks):
if id >= 2:
break
transformer_options["block"] = ("input", id)
if id == 1:
original_h = h
h = forward_timestep_embed1(
module,
h,
emb,
context,
transformer_options,
time_context=time_context,
num_video_frames=num_video_frames,
image_only_indicator=image_only_indicator)
h = apply_control1(h, control, 'input')
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)
hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)
if id == 1:
first_hidden_states_residual = h - original_h
can_use_cache = get_can_use_cache(
first_hidden_states_residual,
threshold=residual_diff_threshold,
)
if validate_can_use_cache_function is not None:
can_use_cache = validate_can_use_cache_function(
can_use_cache)
if not can_use_cache:
set_buffer("first_hidden_states_residual",
first_hidden_states_residual)
del first_hidden_states_residual
torch._dynamo.graph_break()
if can_use_cache:
h = apply_prev_hidden_states_residual(h)
else:
h, hidden_states_residual = call_remaining_blocks(
self,
transformer_options,
control,
transformer_patches,
hs,
h,
emb,
context,
transformer_options,
time_context=time_context,
num_video_frames=num_video_frames,
image_only_indicator=image_only_indicator)
set_buffer("hidden_states_residual", hidden_states_residual)
torch._dynamo.graph_break()
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
new__forward = unet_model__forward.__get__(model)
@contextlib.contextmanager
def patch__forward():
with unittest.mock.patch.object(model, "_forward", new__forward):
yield
return patch__forward
# Based on 90f349f93df3083a507854d7fc7c3e1bb9014e24
def create_patch_flux_forward_orig(model,
*,
residual_diff_threshold,
validate_can_use_cache_function=None):
from torch import Tensor
def call_remaining_blocks(self, blocks_replace, control, img, txt, vec, pe,
attn_mask, ca_idx, timesteps, transformer_options):
original_hidden_states = img
extra_block_forward_kwargs = {}
if attn_mask is not None:
extra_block_forward_kwargs["attn_mask"] = attn_mask
for i, block in enumerate(self.double_blocks):
if i < 1:
continue
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(
img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
**extra_block_forward_kwargs)
return out
out = blocks_replace[("double_block",
i)]({
"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
**extra_block_forward_kwargs
}, {
"original_block": block_wrap,
"transformer_options": transformer_options
})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
**extra_block_forward_kwargs)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
# PuLID attention
if getattr(self, "pulid_data", {}):
if i % self.pulid_double_interval == 0:
# Will calculate influence of all pulid nodes at once
for _, node_data in self.pulid_data.items():
if torch.any((node_data['sigma_start'] >= timesteps)
& (timesteps >= node_data['sigma_end'])):
img = img + node_data['weight'] * self.pulid_ca[
ca_idx](node_data['embedding'], img)
ca_idx += 1
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
**extra_block_forward_kwargs)
return out
out = blocks_replace[("single_block",
i)]({
"img": img,
"vec": vec,
"pe": pe,
**extra_block_forward_kwargs
}, {
"original_block": block_wrap,
"transformer_options": transformer_options
})
img = out["img"]
else:
img = block(img, vec=vec, pe=pe, **extra_block_forward_kwargs)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1]:, ...] += add
# PuLID attention
if getattr(self, "pulid_data", {}):
real_img, txt = img[:, txt.shape[1]:,
...], img[:, :txt.shape[1], ...]
if i % self.pulid_single_interval == 0:
# Will calculate influence of all nodes at once
for _, node_data in self.pulid_data.items():
if torch.any((node_data['sigma_start'] >= timesteps)
& (timesteps >= node_data['sigma_end'])):
real_img = real_img + node_data[
'weight'] * self.pulid_ca[ca_idx](
node_data['embedding'], real_img)
ca_idx += 1
img = torch.cat((txt, real_img), 1)
img = img[:, txt.shape[1]:, ...]
img = img.contiguous()
hidden_states_residual = img - original_hidden_states
return img, hidden_states_residual
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor = None,
control=None,
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError(
"Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError(
"Didn't get guidance strength for guidance distilled model."
)
vec = vec + self.guidance_in(
timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
ca_idx = 0
extra_block_forward_kwargs = {}
if attn_mask is not None:
extra_block_forward_kwargs["attn_mask"] = attn_mask
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if i >= 1:
break
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(
img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
**extra_block_forward_kwargs)
return out
out = blocks_replace[("double_block",
i)]({
"img": img,
"txt": txt,
"vec": vec,
"pe": pe,
**extra_block_forward_kwargs
}, {
"original_block": block_wrap,
"transformer_options": transformer_options
})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=vec,
pe=pe,
**extra_block_forward_kwargs)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
# PuLID attention
if getattr(self, "pulid_data", {}):
if i % self.pulid_double_interval == 0:
# Will calculate influence of all pulid nodes at once
for _, node_data in self.pulid_data.items():
if torch.any((node_data['sigma_start'] >= timesteps)
& (timesteps >= node_data['sigma_end'])):
img = img + node_data['weight'] * self.pulid_ca[
ca_idx](node_data['embedding'], img)
ca_idx += 1
if i == 0:
first_hidden_states_residual = img
can_use_cache = get_can_use_cache(
first_hidden_states_residual,
threshold=residual_diff_threshold,
)
if validate_can_use_cache_function is not None:
can_use_cache = validate_can_use_cache_function(
can_use_cache)
if not can_use_cache:
set_buffer("first_hidden_states_residual",
first_hidden_states_residual)
del first_hidden_states_residual
torch._dynamo.graph_break()
if can_use_cache:
img = apply_prev_hidden_states_residual(img)
else:
img, hidden_states_residual = call_remaining_blocks(
self,
blocks_replace,
control,
img,
txt,
vec,
pe,
attn_mask,
ca_idx,
timesteps,
transformer_options,
)
set_buffer("hidden_states_residual", hidden_states_residual)
torch._dynamo.graph_break()
img = self.final_layer(img,
vec) # (N, T, patch_size ** 2 * out_channels)
return img
new_forward_orig = forward_orig.__get__(model)
@contextlib.contextmanager
def patch_forward_orig():
with unittest.mock.patch.object(model, "forward_orig",
new_forward_orig):
yield
return patch_forward_orig
|